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ABSTRACT

We propose a novel method for reflectance estimation by using a
flash/no-flash image pair. In our method, by using multiple images
of the same scene taken under different lighting conditions, we es-
timate a reflectance component which does not depend on scene il-
lumination, and a shading component caused by illumination lights.
Moreover, we apply it to white balance correction by appropriately
correcting the estimated shading components. The proposed method
achieve better performance than conventional methods especially
under colored illumination and mixture lighting conditions.

Index Terms— Reflectance estimation, White balancing,
Flash/no-flash image, Image decomposition

1. INTRODUCTION

The intrinsic image model [1] assumes that an image scene is the
product of a scene’s reflectance (also called albedo) and shading
(or illuminant) at each pixel, expressed as p̂ = r̂ ⊗ ŝ where p̂ =
[p̂>R p̂>G p̂>B ]> ∈R3N is a vectorized observed color image, where
N is the number of the pixels, and (·)> stands for the transposition
of (·). Also, r̂∈R3N is the reflectance, and ŝ∈R3N is the shading,
i.e. the illumination falling on this pixel. The operator ⊗ is a pixel-
wise multiplication. The intrinsic image decomposition’s aim is to
estimate r̂ and ŝ given an input image p̂. This can be reformulated
by taking the log of the images:

p = r + s, (1)

where p = log p̂ and so on. The decomposition can be applied
to many applications such as depth estimation, material recognition
and white balancing. There exit many methods on the intrinsic image
decomposition [2, 3, 4, 5, 6]. For example, the recent work [5] esti-
mates the reflectance with low computational complexity and obtain
satisfactory results by minimizing a cost function that consisits of the
prior with a heavy-tailed distribution. Many studies, however, have
not focused on mixture lighting scene. Namely, they assume that
the photograph was taken under a single illuminant source. Many of
them fail when decomposing the image with multiple lighting con-
ditions.

White balancing is an important tool to correct chrominance of
images in order to simulate the color consistency in the human vi-
sual system. Many white balancing techniques have been proposed
[7, 8, 9, 10, 11, 12]. Most of the commercial cameras and photo
editing tools involve some practical functionality to recover natu-
ral white balance. Unfortunately, most of them cannot realize ad-
equate white balancing results especially for the colored illumina-
tion and mixture lighting conditions. Some techniques for the white
balancing under the mixed lighting condition have been proposed
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[11, 12, 13, 14], but these methods require user interaction or more
complex and are based on restrictive assumptions. For example, in
[13], to correct localized color casts, they use a scribble interface
and achieve effective correction. In contrast, [11] proposed a semi-
automatic white balance technique for scenes with two light types,
but they assume that the illuminant information is known. The re-
cently proposed method [12] achieves a better performance than the
other methods even under the mixture light sources, it requires a user
interaction.

Meanwhile, the flash/no-flash image pair based image process-
ing [15, 16, 17] have been actively studied, and attracted attention as
an effective method to overcome the limitation of the performance of
classical single image-based methods. In these methods, the noise-
free flash image taken by an electric flash is utilized as a guide image
to restore the noisy no-flash image. In addition, in [15], by estimat-
ing the scene illumination color from a flash/no-flash image pair,
they achieved the white-balancing. However, the method [15] fails
and produces an unexpected color artifact under the complex light-
ing conditions that are considered in this study.

In this paper, we present a novel approach for the reflectance es-
timation. In general, the estimation of a contribution of each light
from a single image is a severely ill-posed problem. We overcome
this difficulty by utilizing a flash image as a guidance. Our technique
estimates the reflectance component of the specific object color, and
the shading component from a flash/no-flash image pair. Then we
apply it to the white balance correction by appropriate correction of
the shading component. The proposed method achieve a good per-
formance especially under colored illumination and mixture lighting
condition.

In Section 2, we discuss the intrinsic image decomposition that
is a key technique of the proposed method. Our decomposition prob-
lem is formulated by the optimization problem with `0,1 norm, and a
decomposition algorithm that estimates the reflectance and shading
components is proposed. In Section 3, several examples are shown
to verify the validity of the proposed algorithm, and compare our
work to conventional methods. In the last section, we briefly con-
clude this paper.
Notation: Our method mainly consists of two steps. We treat images
in the log domain in the first step, and linear domain in the sec-
ond step. In the manuscript, we summarize the notation for images
x = {p, r, s1s2} as follows

x : images in the log domain
x̂ : the linear version of x, that is, x = log x̂
x, x̃ : images in the linear domain, used in the second step

2. INTRINSIC IMAGE DECOMPOSITION

Our goal is to estimate the reflectance and shading components and
to correct its white balance using them. This decomposition is in-
herently a challenging problem since the equation (1) is severely
underdetermined. One solution is to apply tractable prior knowl-



Fig. 1. The flow chart of the proposed method.

edge to solve the problem [3, 5, 18]. Their methods are based on
the simple idea that the reflectance of the natural images has piece-
wise constant regions with sharp edges while the shading component
smoothly varies between pixels.

The proposed white balance correction mainly consists of two
steps:

1. A single reflectance r and two shading components s1, s2,
which correspond to a flash/no-flash image pair p1, p2, re-
spectively, are estimated.

2. The estimated shading component s2 of the no-flash image
p2 is appropriately corrected to eliminate illuminant colors,
and then the white balancing is done simply by adding the
corrected shading component to the reflectance r.

Figure 1 shows the flow of our method.

2.1. Proposed intrinsic image decomposition problem

The first step of our method decomposes two input images to their
reflection and shading components. We assume that the inputs are
well aligned and no further registration or motion compensation is
needed, and the both of the two inputs have the same reflectance. We
find a single reflectance component and two shading components by
minimizing the cost function:

min
r,s1,s2

‖Dr‖0,1 +
2∑

i=1

wsi‖Lsi‖22 +
2∑

i=1

wfi‖pi − (r + si)‖22,

s.t. lj ≤ rj ≤ uj , lj ≤ s1j ≤ uj , lj ≤ s2j ≤ uj , for ∀j, (2)

where rj is a j-th pixel value of r, and so on. L = diag{L′,L′,L′} ∈
R3N×3N is a convolution matrix representing a laplacian op-
erator L′ ∈ RN×N , D = diag{D′,D′,D′} ∈ R6N×3N con-
sists of the vertically concatenated first-order difference operators
D′ = [D>h D>v ]> ∈R2N×N with horizontal Dh ∈RN×N and ver-
tical oprators Dv∈RN×N . The two inputs p1∈R3N and p2∈R3N

Algorithm 1 Algorithm for (4)
1: flash p̂1, and no-flash image p̂2 are given, and they are trans-

formed to log domain p1 and p2.
2: set k=0, and chose the weights wsi, wfi (i=1,2) and α.
3: Choose r(0), s(0)2 , v(0)

i (i = 1, 2, 3, 4).
4: while a stop criterion is not satisfied do
5: s

(k+1)
1 = arg min

s1

f(s1|r(k), s(k)2 ,v
(k)
1,2,3,4)

6: s
(k+1)
2 = arg min

s2

f(s2|r(k), s(k+1)
1 ,v

(k)
1,2,3,4)

7: r(k+1) = arg min
r

f(r|s(k+1)
1 , s

(k+1)
2 ,v

(k)
1,2,3,4)

8: v
(k+1)
1,2,3,4 = arg min

v1,2,3,4

f(v1,2,3,4|r(k+1), s
(k+1)
1 , s

(k+1)
2 )

9: α = 2α, k = k + 1
10: end while
NOTE: f(a|b) indicates the function of the variable a with given b.

are the flash and no-flash images respectively. The norm for the
vectorized color images ‖x‖0,1 (x = [x>R x>G x>B ]>) is defined
with the operator C(m), which returns 0 if m is 0, and 1 otherwise,
by

‖Dr‖0,1 =
∑
j

C (|∂xrRj |+ |∂yrRj |+ |∂xrGj |+ |∂yrGj |

+|∂xrBj |+ |∂yrBj |) , (3)

where j is a pixel index. The optimization problem is partially based
on the work [5]. Our feature is that we relax the relationship (1) by
allowing some reconstruction error and directly find the two shading
components, and we use the `0,1 norm in the first term to treat the
RGB channels simultaneously. To take account of the properties of
the locally flat reflectance, we introduce the `0 based term in (2).
Instead of the simple `0 norm we use the `0,1 norm, where we con-
sider the sparseness of the gradients of all the three color channels.
By introducing the `0,1 norm, fake color artifact due to violation of
the color balance is relieved, which is important treatment especially
for our white balance application. The second term is introduced to
satisfy the properties of the shading whose gradient gradually varies.
The third term penalizes the decomposition error. To obtain a mean-
ingful solution for r, s1 and s2, we consider the constrained problem
with the specific range constraint for each pixel of the three images.

Since the cost function is non-convex due to the `0,1 norm, and
there is an inequality constraint, it is impossible to solve it by con-
ventional gradient-based methods. To solve the problem, we intro-
duce auxiliary variables and adopt the penalty function method. By
introducing the auxiliary variables vi(i= 1, 2, 3, 4), the cost func-
tion to minimize in each iteration of the algorithm is given by

min
r,s1,2,v1,2,3,4

f(r, s1,2,v1,2,3,4), where

f(r, s1,2,v1,2,3,4) = ‖v1‖0,1 +

2∑
i=1

wsi‖Lsi‖22

+

2∑
i=1

wfi‖pi − (r + si)‖22 +

4∑
i=2

ι(vi) + α‖Dr− v1‖22

+α‖r− v2‖22 + α‖s1 − v3‖22 + α‖s2 − v4‖22. (4)

ι(·) is a indicative function, which is defined for each pixel j as

ι(xj) =

{
0, if lj ≤ xj ≤ uj

+∞ otherwise , (5)



(a) Example 1 (b) Example 2-1 (c) Example 2-2

Fig. 2. Scenes with multiple light sources used in our experiment.

The indicative function guarantees that the optimal solution falls in
the range [lj , uj ]. The auxiliary variables vi(i= 1, 2, 3, 4), are in-
troduced for Dr, r, s1, and s2, respectively, and then we add the l2
penalty terms between the four pairs. The parameter α is a weight
that we increase during iterations of the algorithms. As α gets larger,
the solution gets closer to the solution of the original cost function
(2). We alternately minimize (4) w.r.t. each of the seven variables
r, s1, s2,vi(i = 1, 2, 3, 4) with other variables fixed. The algo-
rithm is roughly shown in Algorithm 1. The sub-problem for each
of r, s1, s2 is a simple least squares regression whose solutions can
be found by solving a linear equation of a form Ax = b. Since the
matrix A for the sub-problems is a block circulant matrix with circu-
lant blocks (BCCB), it is diagonalized by FFT, and thus the solution
can be quickly calculated. The solution of the sub-problem w.r.t. v1

is given by applying hard shrinkage to the total sum of the absolute
gradients in the RGB channels. We find the optimal solutions for
vi(i= 2, 3, 4) simply by truncating the variables. One can refer the
literatures [5, 19, 20, 21] for the detail of the sub-problems.

2.2. White Balance Correction

In the previous section, the reflectance and shading components are
calculated by solving the decomposition problem. Next, we discuss
the detail of the proposed white balance correction. We assume that
scene illumination contains one or a few dominant colors, and the
chrominance of the shading has one or a few dominant values. Based
on the assumption, we attempt to remove undesired colors from the
shading component. We transform the shading components in the
linear scale ŝ1 and ŝ2 to the YUV color space. The two chrominance
components in the YUV color space is denoted by ŝU1 , ŝV1 , and so
on. Then we decompose each of the U and V components by using

min
dU ,sU1 ,sU2

‖dU‖0+

2∑
k=1

λk‖LsUk ‖22+

2∑
k=1

βk‖ŝUk −(dU +sUk )‖22, (6)

where dU ∈ RN is the chrominance component of a scene object,
sU1 , s

U
2 ∈RN are the chrominance components of the shading com-

ponent for a flash and a no-flash image respectively. ŝUk (k = 1, 2)
is the linear-domain version of sUk , which is obtained in the previ-
ous decomposition step. Here, we assume that the estimated shading
component includes an object color information, and we remove it
by using `0-based smoothing. We introduce the second term based
on the prior on the shading component. The third term guarantees
that the decomposition error is satisfactory small. The same proce-
dure is applied for V components to obtain dV , sV1 , and sV2 . This
cost function is again non-convex due to the `0 norm, and thus we
solve it by the penalty function method, which is similar to the pro-
cedure in the previous section. The solution is quickly obtained by
iteratively applying hard shrinkage and the least squares method en-
hanced by FFT.

Once the solution for (6) is obtained, the set of smoothed
chrominance dU , dV , and the illuminance of ŝ2 is transformed back

Fig. 3. The results of the second step: (top: left to right) s̄U1 , s̄U2 , dU ,
(bottom: left to right) s̄V1 , s̄V2 , dV .

Fig. 4. Weiss [2] + Retinex [22]: the result is obtained using a
flash/no-flash image pair, (left) Reflectance, (right) Shading of the
flash image.

to the RGB space (denoted by s̃2), and then we obtain a final result
p̃ is obtained by :

p̃ = r̂⊗ s̃2,

where r̂ is the images in the linear domain obtained in the last sec-
tion. We show the results of the optimization (6) of the second step
in Fig. 3 for the image Fig. 2(a).

3. EXPERIMENTAL RESULTS

We apply the proposed method to a variety of flash/no-flash image
pairs under the mixture lighting conditions. The use of multiple im-
ages makes the decomposition easier than a single image. Weiss [2]
also takes advantage of it, and Grosse et al.’s paper [3] shows that the
method [2] with Retinex algorithm [22] outperforms other conven-
tional methods at that time. However, as shown in Fig. 4, which is
derived by Weiss’s algorithm with Retinex [3] 1, the algorithm often
fails since only the two images are inadequate and require more im-
ages. Moreover as the method handles only edges, it does not work
well when input images have different colors like flash/no-flash im-
ages. Thus we adopt [23] and a modified version of Li et al.’s method
[5] for comparison, which is described in the next example.

Since it requires a heavy effort (or even impossible in many
cases) to obtain ground truth of reflectance components, it is difficult
to precisely perform quantitative comparison. On the other hand,
white balancing of images under colored and multiple light sources
is an appropriate application to evaluate the preciseness of the intrin-
sic image decomposition, since a precise decomposition will cancel
color artifacts caused by the light. In the section, we show some
comparison with figures for the decomposition and white balancing.

3.1. Example 1

First we apply our method to a flash/no-flash image pair (shown in
Fig. 2 (a)), which is used in [15]. We compare our result with the

1We use the author-provided software [3].



Proposed Method

Two-input version of [5]

Fig. 5. Example 1: (left to right) Reflectance, Shading of flash image, Shading of no-flash image, Final white-balanced result, and Close-up
of the result.

recently proposed image decomposition method [5]. Although the
method [5] is not designed for white balancing, it is reasonable to
compare with it to show the validity of our algorithm. For fair com-
parison, we slightly change the method [5] to handle two inputs, that
is, the minimization problem used in the method is modified to

min
r
ρ(Dr)+λ

2∑
i=1

‖L(pi − r)‖22,

where ρ(·) is a function that represents the Gaussian-like distribu-
tion with long tail (see [5], for detail). This problem is essentially
the two-input version of [5]. After this optimization, we obtain re-
sults of the conventional method by adopting only the luminance of
the obtained shading component and then adding it back to the re-
flectance. Fig. 5 shows the resultant reflectance r̂, shading ŝ1 and
ŝ2, the final white-balanced image, and its close-up. The original
scene contains reddish illumination. Our results can successfully re-
move undesired illumination and obtain more natural look than the
conventional method.

3.2. Example 2

In this experiment, we prepare a pair of input images with no posi-
tional displacement by using a tripod. We use CANON EOS 20D.
The white balance setting of the camera is fixed to auto white bal-
ance (AWB). In Fig. 2(b), (c), we show an image under the mixture
lighting condition with different color lights. This scene has two
color lights. From Fig. 2(b), (c), it can be seen that the AWB of the
camera is inadequate under the complex environmental lights.

For comparison, we take an image with in-camera manual white
balancing mode, which estimates a white point using an image of
a white object photographed in advance. We show the decomposi-
tion results obtained by the proposed method in Fig. 6(a) and the
white-balanced results of the conventional method and the manual
white balance (MWB) mode and [23]. In [23], the white-balancing
is achieved by the color distribution transfer from a flash image into
a no-flash image. While the greenish and reddish colors remain in
the results of the MWB and [23] and [5], our method can estimate
the reflectance and shading component from a flash/no-flash image
pairs with high accuracy and removes color illuminance more than
the others.

(a) Intrinsic image decomposition results by our method

(b) White-balanced results
Fig. 6. Example 2: (a) Intrinsic image decomposition results of (left
to right) Reflectance, Shading of flash, and Shading of no-flash ob-
tained by our method, (b) The final results of (left to right) MWB,
[23], [5] , and Our method.

4. CONCLUSION
In this paper, we proposed the novel white balancing technique. The
proposed method consists of two-step approach. In the first step,
we estimate the reflectance and the shading components from the
flash/no-flash image pairs by applying intrinsic image decomposi-
tion. In the second step, we eliminate the color component of each
estimated shading. Then we achieve the white balancing where the
corrected image are reconstructed by using the reflectance compo-
nent and appropriately corrected shading components. From ex-
perimental results, it was shown that the proposed method can be
achieved better performance under the mixture lighting conditions.
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