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Abstract—We propose a denoising technique for multiple
exposure image integration. In our method, noise removal is
achieved by the wavelet-shrinkage for multiple exposures, and
a novel weighting scheme for the integration. A weighted image
is converted to the low and the high frequency elements by the
shift invariant wavelet transform, and the wavelet coefficient in
the high frequencies are decreased by thresholding based on the
wavelet-based hard shrinkage. The weight is designed to reduce
sensor noise and quantization noise in the process of the multiple
exposure integration. Our method works well especially for noise
in shadow areas. We show the validity of the proposed algorithm
by simulating the method with some actual noisy images.

Index Terms—Image denoising, Exposure fusion, Wavelet
shrinkage, Weighting function

I. I NTRODUCTION

By adapting to lights in any viewing condition, the human
visual system (HVS) can capture a wide dynamic range of ir-
radiance (about 14 orders in log unit), while the dynamic range
of CCD or CMOS sensors in most of today’s cameras does
not cover the perceptional range of real scenes. It is important
in many applications to capture a wide range of irradiance of
natural scene and store the irradiance value in each pixel. For
example, it can address the problem of under- or over-exposure
when taking a photo of a man with very bright backlight, or
photographing outside from a tunnel. In the application of CG,
a high dynamic range image (HDRI) is widely used for high
quality rendering with image based lighting [1]. In addition, it
is applied to the car-mounted camera, the surveillance camera,
and the photographic development with high resolution.

In the last decade, to capture the HDRI, many techniques
have been proposed based on the multiple-exposure principle,
in which the HDRI is constructed by merging some pho-
tographs shot with multiple exposures. To gain high dynamic
range, we should take several photographs with short to long
exposures. The dynamic range is generally defined by the
ratio of darkest and brightest intensities of an image, where
the darkest point is usually defined as the lowest value in
a range that is not dominated by noise. Images captured by
image sensors generally suffer from the noises such as dark
current and shot noises. Thus the image denoising is often
required to acquire the high dynamic range. The merging
process of multiple exposures inherently has capability to
reduce the noise. However it is inadequate and noises often
appear especially in shadows. Especially when taking photos
with a hand held camera under a dark lighting condition, high
ISO setting is required to restore the dark area without blurring

artifacts, which yields noisy images and then brings down
the dynamic range. Moreover the dark area of the HDR is
enhanced by tone mapping operators. Many of the existing
operators tend to stretch the dark area to enhance the local
contrast in shadows, which makes the noise more perceivable.
Moreover this property of the tone mapping often emphasizes
quantization noise. Most of conventional methods for the HDR
image integration [2]-[5] do not take the noise into account,
in which multiple images are merged simply by taking a
weighted mean. The summation of multiple images inherently
has the denoising property, but its effect is not very effective.

In this paper we propose an integration technique of the
multiple exposure images. In our method, the noise removal
is achieved by the wavelet-shrinkage for multiple exposures
and a novel weighting scheme for the integration. A weighted
image is converted to the low and the high frequency elements
by the shift invariant wavelet transform, and the wavelet coef-
ficients in the high frequencies are decreased by thresholding
based on the wavelet-based shrinkage. The weight is designed
to reduce sensor noise and quantization noise in the process
of the multiple exposure integration. Our method works well
especially for noise in shadow.

In the following section, we introduce a technique for
combining the multiple exposure images. In the method, the
image is combined in the wavelet domain. By employing a
sparse approximation in the wavelet expansion, the denoising
is fulfilled. In Section III, a new weighting scheme is intro-
duced to further reduce the sensor noise and quantization error.
In Sec. IV, we show some examples to show the validity of
the algorithm.

II. PROPOSEDMETHOD

A. Outline

Figure 1 shows the block diagram of the proposed tech-
nique. We take multiple exposure images as an input. For
a color image, the same process is employed to each of
RGB channels. First of all, the input images are converted
to radiance domain by compensating the nonlinearity of a
sensor to linearize the response. A weighting function, which
is designed to minimize the error, is multiplied to each of
the images. Then, they are transformed by the shift invariant
wavelet decomposition. In the wavelet domain, the multiple
images are combined after the hard shrinkage is performed for
the wavelet coefficients. The HDR image is restored simply by



Fig. 1. Block diagram

the reverse shift invariance wavelet transform. Detail of each
step is explained in the following sections.

B. Image Integration

The relationship between the irradianceR and the amount
of lights L that we measure through some sensor can be
expressed by [4]

L = R · t, (1)

wheret is a exposure time.
In many of camera sensors, the captured signalL is nonlin-

early transformed to pixel valuesi. In practice, the pixeli is
one of the observed RGB values at a pixel, which is typically
quantized to 8 bits. For convenience, we set the range ofi
to [0, 1]. To accurately retrieve the irradiance, we need to
compensate the nonlinearity by estimating the transform. Here
we call the transform ”camera response curve” and we denote
it by

i = g(L) (2)

Among the existing methods for the camera calibration prob-
lem, we adopt Mitsunaga et al.’s method [4] to findg, in which
the curve is approximated by a low order polynomial using
multiple images and the values of exposure ratios between the
images. Once the curve is estimated the irradiance is derived
from (1) and (2) as

R = f(i)/t (3)

where the inverse camera response curve,f(x) = g−1(x). In
our method, the multiple exposure images are taken by varying
the shutter speed of a camera with other settings fixed.

In the conventional methods [2]-[5], the irradianceR of each
multiple exposure image is calculated by (3), it is merged by
taking a weighted mean in conventional methods,

Im =

∑N
n=1 w (n) [Rm (n) /tn]∑N

n=1 w (n)
, (4)

where Rm(n) is a m = {R,G,B} channel of then-th
exposure image.N is the number of images,tn is the exposure
time of then-th image, andw is a weighting function.

In our method, the integration is performed in the wavelet
domain. We first apply the weighting function toRm before
the wavelet transform:

R′
m(n) = w(n) ·Rm(n). (5)

Detail of the weightw is explained in the next section. Then
the weighted image is transformed by the Haar-based shift

invariant wavelet. The integration is performed toR′
m in the

wavelet domain.

C. Denoising by Shrinkage

In general, a low exposure yields a dark image and its low
pixel values with noises are enhanced by the camera response
curve and the tone mapping operator. Summing up multiple
images may remove the noise to some extent, since such noises
randomly appear. However the simple integration (4) does not
always remove noises adequately. In this section we try to
remove the noise by using the shrinkage.

We apply the wavelet shrinkage to our integration problem
to remove the noise. The weighted image,R′

m in (5) is
converted by the Haar-based shift invariant wavelet transform,
that is, a wavelet decomposition without subsampling. In the
wavelet conversion, a low-pass filter (L) and high-pass filter
(H) are performed to it in the horizontal and vertical direction
respectively, and four subbands (LL, HL, LH, and HH) are
produced, and then repeatedly the LL band is transformed
to four bands. The wavelet shrinkage is a process to make
the wavelet representation sparse by thresholding the wavelet
coefficients.

Here we introduce the wavelet shrinkage for the multiple
exposure fusion. In our method, we modify the shrinkage [7],
[8] to a multiple exposure integration. The problem is defined
to minimize the cost function:

min
h

E(h) = |h|0 + λ
N∑

n=1

(h− h(n))2, (6)

whereh (n) is an input wavelet coefficient of the weighted
n-th exposure image andh is an output wavelet cofficient
formed by the high dynamic range. By differentiatingE(h)
with respect toh and setting it to 0, we derive the optimal
wavelet coefficients:

h∗ =

{
0, if 1− λ

(
1
N

∑
n h(n)

)2
> 0

1
N

∑
n h(n), otherwise

. (7)

The scaling coefficients are simply merged by the weighted
mean (4). Note that roles of are not only the shrinkage
based denoising but also multiple exposure fusion in the
wavelet domain in which it is different from the conventional
shrinkage.



III. W EIGHTING FUNCTION

A. conventional scheme

In the conventional methods the weighting function is
introduced because under- or over- exposed regions are much
less reliable than the regions of middle intensities. Thus in
the conventional methods, the weight is specified to be small
for pixel values of the saturated regions, high for the middle
intensities. Two examples for the weighting functions used in
the conventional methods [2] , [3] are shown in Fig.2.

Fig. 2. Two examples of weighting functions: (left) hat function,
(right) Gamma-like function

In the conventional methods, the weighting functions in
Fig.2 are built based on the assumption that middle intensities
around 0.5 have high reliability for irradiance estimation.

B. Weight for denoising

The noise occurred in CCD and CMOS sensors are in
general well characterized by the additive signal-dependent
and independent terms [6], then we model the noise by

L = x+ a1δ1 + a2δ2x, (8)

wherex andL are the noiseless signal and output of the sensor,
respectively.δ1 andδ2 are Gaussian noises anda1 anda2 are
parameters that characterizes the sensor.

In most cameras, an image compression is performed in the
end of pipeline, and thus the quantization errorδq is added
to g(L). Then the output of the camera compensated by the
inverse camera response curve can be written by

f(g(L) + δq),

By approximating the output by the linear function ofδq, the
noise term is denoted by

f(g(L) + δq)− x ≈ f(g(L)) + f ′(g(L))δq − x

= L+ f ′(g(L))δq − x

= a1δ1 + a2δ2x+ f ′(g(L))δq (9)

In an ideal case where the effect of the camera response curve
g is completely canceled by the inverse operationf in Sec.
II-B, the noise is derived by

n = (a1δ1 + a2δ2x+ f ′(g(L))δq)/t. (10)

In our method, the weighting function should be designed to
the inverse of the noise.

w0(i) = m(i) · 1

(a1δ1 + a2δ2 · x+ f ′(g(L))δq)/t

≈ m(i) · 1

(a1δ1 + a2δ2 · L+ f ′(g(L))δq)/t

= m(i) · 1

(a1δ1 + a2δ2 · f(i) + f ′(i)δq)/t
(11)

wherem(i) is a masking function that decays to 0 ati = 0
and i = 1, and we use the approximationx ≈ L. In practice,
however, determining the parametersa1, a2 and the means
of the noisesδ1, δ2, δq are usually laborious task. Thus we
simply Eq.(11) by

w(i) = m(i) · 1

(b1 + b2f(i) + b3f ′(i))/t
(12)

The parametersb1, b2, b3 are determined by trial-and-error
and are fixed for all of images. The first and second terms
of (10) are sensor noises, while the third term corresponds to
the quantization noise. Thus one can control the suppression
effect of the sensor noise and quantization error by varying
the parameters in (12).

IV. EXPERIMENTAL RESULTS

In order to evaluate the validity of the proposed algorithm,
we have conducted for some examples. In the first experiment,
we use three photographs, which are sampled from [9]. Three
shots are obtained by changing the shutter speed, while the
aperture is fixed, and use them as an input for our algorithm.
As a conventional method, we combine the images with the
hat type of the weight (Fig.2).

In Fig.3 the results obtained by (lower left) the conventional
method and (lower right) our method for two sample images.
The contrast is enhanced by the CLAHE-based tone mapping
[10] to improve visibility.

Next we show the effect of the weighting function. Fig.4 are
the tone-mapped results obtained by our weighting scheme. In
order to show the effect of the weight clearly, the shrinkage
is not performed to this result. The left image is the result
that we put more weights on the sensor noise removal, that
is, largerb1 andb2 in (12), while the right image is obtained
by putting more weights on the quantization noise removal,
that is, largerb3. One can see that our weight can control the
suppression effect of the two types of noises.

To evaluate the method quantitatively, we artificially created
ground truth and noisy images as follows. Three images with
different exposures, each of which is obtained by averaging
20 photographs (set this as a noise free photo), and we added
noises to the images. Then the three images are integrated
by conventional method or our method. Fig.5 shows of the
results. The image at the top is the tone-mapped version of
an original (noise free) HDR image. The right and left figures
in the bottom are obtained by BM3D [12] and our method,
respectively. The SSIM scores [11] of ours and BM3D are
comparable (0.97 for both of them). One can see from the



Fig. 3. Examples: (upper) noisy image, (lower left) conventional method,
(lower right) our method

Fig. 4. Example 2: (left) sensor noise suppression, (right) quantization noise
suppression

figure, however, that the result of BM3D has slightly clearer
contrast. On the other hand, our method is about ten times
faster than BM3D, and selectively control the suppression rate
of the sensor and quantization noise by (12).

V. CONCLUSION

We proposed a method for the HDR acquisition with noise
removal. The proposed method can significantly reduce noises
compared with the conventional integration method, especially
in the dark area. Moreover, we proposed the new weighting
function that can control the suppression of quantization and
sensor errors. In addition, our method can reduce noises with
less computational complexity.
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