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SUMMARY We propose an image restoration technique that uses mul-
tiple image integration. The detail of the dark area when acquiring a dark
scene is often deteriorated by sensor noise. Simple image integration in-
herently has the capability of reducing random noises, but it is especially
insufficient in scenes that have a dark area. We introduce a novel image in-
tegration technique that optimizes the weights for the integration. We find
the optimal weight map by solving a convex optimization problem for the
weight optimization. Additionally, we apply the proposed weight optimiza-
tion scheme to a single-image super-resolution problem, where we slightly
modify the weight optimization problem to estimate the high-resolution
image from a single low-resolution one. We use some of our experimen-
tal results to show that the weight optimization significantly improves the
denoising and super-resolution performances.
key words: denoising, convex optimization, high dynamic range images,
super-resolution

1. Introduction

A high ISO sensitivity setting is required when taking pho-
tographs with a hand-held camera under a dark lighting con-
dition to restore the dark area without blurring artifacts,
which yields noisy images. In addition, the dynamic range
of a sensor is usually defined by dividing the maximum
achievable signal intensity by the maximum level of camera
noise, and thus the sensor noise brings down the dynamic
range. Simply taking into consideration the mean of multi-
ple images with random errors can help reduce the amount
of noise. Several authors have recently been investigating
more effective integration techniques [2]–[9]. Buades et al.
[2] proposed an effective method with sensor noise estima-
tion for generating a noiseless and sharp image using mul-
tiple short exposure images or video. Mann and Picard [3]
introduced a multiple exposure image integration technique
for obtaining a noiseless high dynamic range (HDR) image.
Matsuoka et al. [4] designed a weight function to further
reduce the sensor and quantization noises in image integra-
tion, but it is not optimal in any sense.Another weight op-
timization method [5] was proposed for image integration,
but the main purpose of this method is image-stitching, and
they do not consider any restoration using multiple image
denoising. On the other hand, several methods [6]–[9] can
be used to effectively reduce the amount of noise using a
noiseless flash image as a reference, but they are restricted
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to using scenes where the flash light is fully reached.
Image super-resolution (SR) has also been widely in-

vestigated [10]–[15]. SR is the problem of recovering
a high-resolution (HR) image from one or multiple low-
resolution (LR) image inputs. Turkan et al. [14] introduced
an effective single-image SR technique based on manifold
learning. First, they estimate the optimal weights to approx-
imate an input LR patch from itsK nearest neighbors (K-
NN) patches searching from the down-scaled images intro-
duced from the input LR image, using locally linear embed-
ding (LLE) [15]. Then, the HR patch is estimated using a
weighted linear combination of theK-NN patches, which
correspond to theK-NN patches in the LR patch space,
based on the estimated weights in the HR patch space. They
use scalar weights to reconstruct the HR patch, but it is much
more difficult to reproduce the complex texture.

We propose a novel method for multiple image integra-
tion. The main contribution of the proposed method is that
we find the optimal weight map using a convex optimization
technique. In addition, we apply the proposed weight opti-
mization scheme to the single-image SR problem. We show
that the weight optimization significantly improves the ca-
pabilities of the denoising and super-resolution compared to
some of the conventional approaches.

We explain the multiple image integration procedure,
including the HDR acquisition, in the following section. In
Sect.3, we introduce the method for the weight optimiza-
tion. The problem is formulated as a convex optimization
problem and the primal-dual splitting algorithm [16] is used
to solve it. In Sect.4, we apply the proposed weight opti-
mization scheme to an image SR problem. We demonstrate
the validity of the proposed methods in Sect.5.

2. Multiple Image Integration

Let uk ∈ �N (k = 1,2, · · · ,K) be the vectors represent-
ing the noisy observed images withN pixels. The multiple
image integration can be expressed using the linear combi-
nation of theK weighted imagesUkwk, (k = 1,2, · · · ,K):

r =
K∑

k=1

Ukwk, (1)

whereUk ∈ �N×N is a{N×N}-diagonal matrixUk=diag{uk},
wk ∈�N is a weight map foruk, andr ∈�N is an integrated
image. The weight maps are normalized to

∑K
k=1 wk = 1,
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where1 ∈ �N is the vector of all ones, to preserve the energy
of the image.

We need to compensate for the nonlinearity by estimat-
ing the inverse functionf −1 of an in-camera intensity trans-
form [17], [18] to accurately linearize the images in HDR
image generation. We call the transform a ”camera response
curve” denoted byf in this paper that gives the relationship
ûk = f (uk · tk), wheretk is the exposure time of thek-th
image, andûk, uk ∈ �N are the observed image and sen-
sor output. If raw images are used or the image sensor has
a linear sensitivity characteristic, this photometric calibra-
tion can be skipped. We adopted Mitsunaga et al.’s method
[19] for among the calibration methods to estimatef −1, in
which the curve is approximated by a low order polynomial
using multiple images and exposure ratios. Once the curve
is estimated, the images are linearized byuk = f −1(ûk)/tk.
The multiple exposure images when using our method are
taken by varying the exposure times of a camera with other
fixed settings. Then, the images are integrated using (1) to
generate the HDR image.

3. Proposed Method

We need to find the denoised imager and the weightwk

with uk given in our framework. Finding the optimal val-
ues for the two variables inherently leads to an ill-posed and
non-convex optimization problem. Thus, we start with the
conventional weight in [20] as an initial guess, and then,
constructr using the method discussed in Sect.3.1. With
the obtained image, we optimize the weight as explained in
Sect.3.2. Finally, we again use the method in Sect.3.1 with
the optimal weights to obtain a final result.

3.1 TV denoising

We adopt the conventional Total Variation denoising method
[21] to find r . Given the weightwk, the problem is defined
as

min
r

∥∥∥∥∥∥∥
K∑

k=1

Ukwk − r

∥∥∥∥∥∥∥
2

2

+ λ∥r∥TV, (2)

whereλ is the weight of the cost and∥·∥TV is the anisotropic
Total Variation regularization term. This minimization prob-
lem can be solved by using thealternating direction method
of multipliers (ADMM) [22]. We iteratively perform two
steps, solving a linear equation and conducting a shrinkage
operation in the optimization procedure. Using the diago-
nalization by FFT and a soft-thresholding function, we can
quickly obtain the solution (see [21] for more details).

3.2 Weight optimization for multiple image integration

The optimization for the weightwk is fulfilled by

min
w
∥p̄ − r∥22 + α∥Dp̄∥1

s.t.
K∑

k=1

wk = 1, and wk ∈ C (k = 1,2, · · · ,K), (3)

whereα is the weight of the cost,̄p =
∑K

k=1 Ukwk, D =
[D⊤h D⊤v ]⊤ ∈�2N×N are the vertically concatenated first-order
differential operators in the horizontalDh∈�N×N and verti-
calDv ∈�N×N directions, (·)⊤ stands for the transpose of (·),
and a convex setC is defined as

C = {x ∈ �N | xn ∈ [0,1] (n = 1,2, · · · ,N)}.

Owing to the weights satisfying
∑K

k=1 wk = 1, p̄ can be
rewritten as

p̄ =
K∑

k=1

Ukwk =

K−1∑
k=1

(Uk − UK) wk + uK = Pw+ uK , (4)

whereP ∈ �N×N(K−1) andw ∈ �N(K−1) are denoted as

P = [(U1 − UK) (U2 − UK) · · · (UK−1 − UK)],

w =
[
w⊤1 w⊤2 · · · w⊤K−1

]⊤
.

On the basis of the above discussion, the constrained prob-
lem of (3) is rewritten as an unconstrained problem:

min
w
∥Pw+ (uK − r )∥22 + α∥D(Pw+ uK)∥1

+ ιC(Qw) +
K−1∑
k=1

ιC(wk), (5)

whereιC denotes the indicator function,

ιC(x) =

{
0, if x ∈ C
+∞, if x < C

, (6)

andQ ∈ �N×N(K−1) is a{N×N(K − 1)}-matrix composed of
theK − 1 identity matrices

Q = [I N I N · · · I N]︸            ︷︷            ︸
K−1

. (7)

The third term of (5) guarantees the solution satisfies∑K
k=1 wk = 1 by taking into considerationwK = 1−∑K−1

k=1 wk,
and the forth term forceswk to be within the [0, 1] range.

The optimization problem in (5) is convex, and thus,
can be solved by using the primal-dual splitting (PDS) al-
gorithm [16]. The PDS algorithm solves the minimization
problem of the form

min
x

F(x) +G(x) + H(Lx ), (8)

whereF, G, andH are the proper, lower semi-continuous,
and convex functions, andF is differentiable.L is a linear
operator. For the primal-dual algorithm to be applicable to
our problem, we set

F(x) = ∥Px+ (uK − r )∥22,
G(x) = 0,
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L =



DP
Q

I N O · · · O
O I N · · · O
...

. . .
...

O O · · · I N


(∈ �(N(K+2)×N(K−1)),

H(z) = α∥xa + g∥1 + ιC(xb) +
∑K−1

k=1 ιC(xck),

where g = DuK

(
∈�2N

)
,

xa = DPx
(
∈�2N

)
, xb = Qx

(
∈�N

)
,

x = [x⊤c1 x⊤c2 · · · x⊤c(K−1)]
⊤

(
xc∗ ∈�N

)
and

z = [x⊤a x⊤b x⊤]⊤ = Lx
(
∈�N(K+2)

)
.

Then, the primal-dual splitting algorithm iteratively finds
the two proximity operators†

1. x(τ+1) := proxγ1G

(
x(τ) − γ1∇F(x(τ)) − γ1L ∗y(τ)

)
2. y(τ+1) := proxγ2H∗

(
y(τ) − γ2L (2x(τ+1) − x(τ))

)
, (9)

where∇F is the gradient ofF andL ∗ is the adjoint ofL .
The sequence (x(•))•∈� weakly converges to the solution of
(8) (see [16] for more details). The proximity operators in
(9) are given by

proxγ1G(x) = x,

proxγ2H∗ (z) = z− γ2proxH/γ2

(
z
γ2

)
, (10)

where

proxH/γ2
(z) =

[Pa(xa)⊤ Pb(xb)⊤ Pb(xc1)⊤ · · · Pb(xc(K−1))
⊤]⊤.

Pa : �2N → �2N is the soft-thresholding operator

Pa(xn) =


xn − α/γ2, if xn − α/γ2 > −gn

xn + α/γ2, if xn + α/γ2 < −gn

−gn, otherwise
, (11)

wheregn is then-th element ofg, andPb : �N → �N is
given by

Pb(xn) =


0, if xn < 0
xn, if 0 ≤ xn ≤ 1
1, if xn > 1

. (12)

This discussion leads to Algorithm 1 shown below.

4. Image Super-Resolution using the weight optimiza-
tion

Next, we apply the proposed weight optimization scheme
†The proximity operator forγ andF(y) is defined as

proxγF(x) = arg min
y

F(y) +
1
2γ
∥x − y∥2

Algorithm 1 Algorithm for solving (5)
1: Setτ = 0 anduk(k = 1,2, · · · ,K), w(0) are given.
2: Solve(2) for w = w(0).
3: Setx(0) = w, y(0) = Lx .
4: x(τ+1) = proxγ1G

(
x(τ) − γ1 ▽ F

(
x(τ)

)
− γ1L ∗y(τ)

)
5: y(τ+1) = proxγ2H∗

(
y(τ) − γ2L

(
2x(τ+1) − x(τ)

))
6: If the criterion is not satisfied, incrementτ by 1 and then go back to 4.
7: Setw = x(τ+1) and make an HDR image.
8: Solve (2)

to the super-resolution (SR) problem. The proposed SR
method is based on the Turkan et al.’s SR method [14]. We
will briefly summarize this algorithm first, and then, we will
explain the details of the proposed SR approach.

4.1 The conventional SR algorithm

The SR algorithm in Turkan et al.’s method [14] is summa-
rized as follows:

1. For each patchl i in the input LR imagel:

a. Find theK-nearest neighbors (K-NN) {vl
i,k}Kk=1 of l i

on the set of down-scaled imagesNst calculated
from l with a scaling factor ofst.

b. Calculate the weights of theK-NN patches{vl
i,k}Kk=1

that minimize the error from reconstructingl i .
c. Calculate the HR patchhi using the weights and

the K-NN HR patches{vh
i,k}Kk=1 corresponding to

{vl
i,k}Kk=1 (see Fig.1).

d. If the estimated HR patchhi does not reach the
desired scale, setl i =hi and go back to Step 1a.

2. Construct the HR imageh using the simple weighted
averaging of the stacked pixels with the overlapping
patches, then applying the iterative back-propagation
(IBP) [10] to preserve the global consistency between
the HR imageh and the input LR imagel.

The SR using this method is achieved by gradually increas-
ing the size of a given LR patch, e.g., byp-pixels in each
dimension. This approach is based on the assumption that
the small patch geometry can be preserved under small scal-
ing factors [11]. The conventional method [14] calculates
the scalar reconstruction weights of theK-NN patches in
Step 1b. Due to the low degree of freedom, the results of-
ten have an over-smoothing effect and an unexpected arti-
fact, especially when the target patch has a complex texture.
Therefore, we use the proposed weight optimization scheme
to improve these problems.

Figure 2 shows the flow of the proposed SR algorithm.
In our method, the patches subtracted their mean energy, i.e.,
the SR approach handles the high frequency domain.

4.2 K-NN search

In the conventional method [14], the set of down-scaled im-
agesNst is introduced for searching theK-NN patches by
down-scaling the input imagel with several pixel-shifting
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Fig. 1 K-NN search from down-scaled images.

Fig. 2 Flow of proposed super-resolution.

offsets, wherest is the down-scaling factor. Let the input
LR patch size bem× m and the iteration numbert (we set
t = 1 as the initial value) in the Step 1. The down-scaling
factor is obtained usingst = (m+ (t−1)p)/(m+ tp) by in-
creasing pixel sizep. Since this approach is inefficient and
redundant, we introduceNst using several blurring kernels
(four directional motion blur with 45 degree intervals from
0 to 135 degree, and Gaussian blur) and down-scaling to the
input imagel, and search theK-NN patches. Note that we
set the filter size to be the same as the target LR patch size.
Let us denote LR and HRK-NN patch pairs as

{
vl

i,k, v
h
i,k

}K

k=1
.

4.3 Weight optimization for image super-resolution

We find the optimized weights for approximating the input
LR patch by using the weighted linear combination ofK-NN
patches using LLE [15]. Then, we restore the unknown HR
patch corresponding to the input LR patch by using the es-

timated weights. We propose the weight optimization prob-
lem, which is a slightly modified version of (3), to estimate
the weights:

min
ŵl

i

∥p̄l
i − l i∥22 + α∥D̂ŵl

i∥1

s.t.
K∑

k=1

wl
i,k=1, and wl

i,k∈C (k = 1, 2, · · · ,K) , (13)

wherel i ∈�M is the target LR patch of thei-th pixel in the in-
put LR imagel with M pixels,ŵl

i =
[
wl⊤

i,1 wl⊤
i,2 · · · wl⊤

i,K

]⊤
∈�MK

is a concatenated vector, which is composed of the weights
wl

i,k ∈ �M of K-NN patchesV l
i,k = diag

{
vl

i,k

}
∈ �M×M, and

p̄l
i =

∑K
k=1 V l

i,kw
l
i,k. D̂ = diag{D′,D′, · · · ,D′} ∈ �2MK×MK consists

of the vertically concatenated first-order differential opera-
tors D′ = [D⊤h D⊤v ]⊤ ∈ �2M×M with horizontalDh ∈ �M×M

and vertical operatorsDv ∈ �M×M, and a convex setC is
defined as

C = {x ∈ �M | xn ∈ [0,1] (n = 1,2, · · · ,M)}.

The second term of (3) is introduced as a smoothness prior
for an integrated image. The aim of super-resolution is to
restore sharp edges byK-NN patch integration. For the pur-
pose, we slightly modified the second term as a weight map
smoothness prior in (13). This modified term induces the
spatial smoothness to a weight map, and local consistency
is preserved accordingly.Similar to (4),p̄l

i can be rewritten
as

p̄l
i =

K∑
k=1

V l
i,kw

l
i,k =

K−1∑
k=1

(V l
i,k − V l

i,K)wl
i,k + vl

i,K = Pl
iw

l
i + vl

i,K ,

(14)
wherePl

i ∈�M×M(K−1) andwl
i ∈�M(K−1) are denoted as

Pl
i =

[
(V l

i,1 − V l
i,K) (V l

i,2 − V l
i,K) · · · (V l

i,K−1 − V l
i,K)

]
,

wl
i =

[
wl⊤

i,1 wl⊤
i,2 · · · wl⊤

i,K−1

]⊤
.

Furthermore, the constrained problem in (13) when intro-
ducing the indicator functionιC, is rewritten as an uncon-
strained problem:

min
wl

i

∥Pl
iw

l
i + (vl

i,K − l i)∥22 + α∥D̃wl
i∥1

+ ιC
(
Qwl

i

)
+

K−1∑
k=1

ιC
(
wl

i,k

)
, (15)

whereQ∈�M×M(K−1) is a{M×M(K −1)}-matrix composed
of theK − 1 identity matrices in (7).Here, we replaced the
first-order differential block diagonal matrix̂D of (13) with
D̃ ∈ �2M(K−1)×M(K−1), which are only different for the matrix
dimension. The second term of (15) is introduced to add
sparsity to the gradient of the weight map. The third term of
(15) guarantees the solution satisfies

∑K
k=1 wl

i,k=1 by taking

wl
i,K = 1−∑K−1

k=1 wl
i,k, and the fourth term forceswl

i,k to be
within the [0,1] range.

The cost function of (15) is also convex, and thus, can
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be solved by using the PDS algorithm [16], which is de-
scribed in Sect.3.2. For the PDS algorithm to be applicable
to our problem in this SR problem, we set

F (x) = ∥Pl
ix + (vl

i,K − l i)∥22,
G (v) = 0,

L =



D̃
Q

I M O · · · O
O I M · · · O
...

. . .
...

O O · · · I M


(
∈ �M(3K−2)×M(K−1)

)
,

H (z) = α∥xa∥1 + ιC (xb) +
∑K−1

k=1 ιC (xck) ,

where xa = D̃x
(
∈�2M(K−1)

)
, xb = Qx

(
∈�M

)
,

x = [x⊤c1 x⊤c2 · · · x⊤c(K−1)]
⊤

(
xc∗ ∈�M

)
and

z = [x⊤a x⊤b x⊤]⊤ = Lx
(
∈�M(3K−2)

)
.

According to the PDS algorithm, we iteratively find the two
proximity operators in (9) (see Sect.3.2 for more details).
Note that we setgn = 0 for (11) in this SR problem. Thus,
we solve it by using a similar procedure as described for
Algorithm 1 without needing the image integration and the
TV denoising.

Once the optimal weights{wl
i,k}K−1

k=1 are obtained, we in-
tegrate theK-NN HR patches{Vh

i,k}Kk=1 by using them. Since
there is a difference in the dimensions between the LR and
HR patch pair, we obtain the up-sampled weights{wh

i,k}K−1
k=1

by applying bicubic interpolation to the weights{wl
i,k}K−1

k=1 . Fi-
nally, the HR patchhi is obtained by

hi =

K−1∑
k=1

Vh
i,kw

h
i,k + vh

i,K . (16)

Accordingly, we repeatedly perform the procedure while
gradually expanding the patch size until the desired scaling
factor s has been reached. Then, we reconstruct the target
HR imageh by using the weighted averaging of the stacked
pixels. In fact, the conventional method uses a uniform
weight. Therefore, the reconstructed image is often over-
smoothed. In contrast, we use non-uniform weights based
on the Gaussian distribution, where the input is the distance
between the center pixel and the others in each HR patch.
Finally, we use the IBP method [10] to treat the estimated
HR imageh to preserve the global consistency.

5. Experimental Results

We present and discuss our experimental results in this sec-
tion. First, we discuss the multiple exposure image integra-
tion with denoising, and then, show the capability of the pro-
posed weight optimization scheme by using it for the single-
image SR problem.

Table 1 SNR and Nonlinear PSNR (NSNR), Hat: Hat function,
Hat+TV: TV denoising with Hat function, and Our method.

Hat Hat+TV Our method
Image SNR NSNR SNR NSNR SNR NSNR

(a) 15.3 23.8 17.4 24.4 19.3 26.4
(b) 15.4 27.0 19.2 28.2 20.8 32.2
(c) 14.4 24.6 17.1 26.3 18.8 29.6

5.1 Multiple exposure image integration experiment

In the first experiment, we used several image sets with three
different exposures to obtain HDR image, all of which were
taken with ISO 100 sensitivity and had little noise. These
shots were obtained by changing the shutter speed, while
the aperture was fixed.We simply integrate each image to
a HDR image with a hat function and use it as a ground
truth, which is commonly used for both of the conventional
methods and ours.We added white Gaussian noise to the
images. We adopted the simple weight map in [20] and TV
denoising in Sect.3.1, which is essentially same as [21], as
the conventional methods we used for comparison.

The quantitative comparison is summarized in Table 1,
in which we compare the proposed method with the weight
of the hat function (Hat) in [20] and the TV denoising with
the hat function (Hat+TV). Note that only the difference be-
tween Hat+TV and our method is the weights, and the same
parameters are used in the TV denoising. For the quality
metrics, we used the SNR† of the obtained HDR image and
the nonlinear PSNR. The nonlinear PSNR is calculated by
applying Reinhard et al.’s tone-mapping [17] to the HDR
output to yield its low dynamic range version, and then,
finding its PSNR. Since the HDR image contains a high
dynamic range, the noises in its bright regions are overesti-
mated by the SNR even though it is less perceivable than the
noises in the shadows. The nonlinear PSNR may be a more
suitable metric for evaluating HDR images when taking the
human visual system into consideration. Images (a)-(c) in
the list are shown as Figs.3(a)-(c). We can see from the re-
sults that the weight optimization significantly improves the
image quality (see the parts circled in red).

In the second experiment, we took photographs with
ISO 1600 sensitivity to obtain inputs with actual sensor
noises, and then, applied the methods to them. Figures
3(d)-(e) illustrate the results for the images with actual sen-
sor noises, which were taken with the ISO 1600 sensitivity.
We averaged the fifteen photographs and the mean image is
set as the ground truth. We can see from the figures that
the conventional method (Hat+TV) sometimes had overly
smooth edges, and especially lacked sufficient denoising for
the bright region, while our method outperforms it.

The conventional weights such as the hat function play
a role in eliminating the saturated pixels, while our method
does not consider the pixel saturation. In our method, how-
ever, pixel saturation seldom occurs unless the inputh has

†Since the HDR image does not have a peak value, PSNR is
not used for the comparison.



6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

(a) (b) (c) (d) (e)

Fig. 3 Results: (from top to bottom) Ground truth, Simple hat function (Hat), Hat function plus TV
(Hat+TV), and Our method. (a)-(c): images with AWGN, (d)-(e): images with actual sensor noise.

saturation by virtue of the first term of (3).

5.2 Single image-based super-resolution experiment

In this experiment, we compared our SR results with Turkan
et al.’s SR method [14]. We set the SR factors=2, the initial
LR patch sizem=3, and the increase size of patchesp=1.
The number of nearest neighbors was set toK = 8 in our
method. We used the parameter settings used in [14] for the
conventional method.

We can see from the results shown in Fig.4 that the pro-
posed method preserved the details of the scarf and knitwear
better than the conventional method. Moreover, Fig.5 shows
that the proposed method can restore the complex texture of
the fur, particularly under the ear of the fox. The conven-
tional method uses the scalar weight estimation for the ap-
proximation with theK-NN patches using LLE [15]. On the
other hand, our method estimates the pixel-wise weights for
the approximation with a high degree of freedom, to achieve

less approximation error and a better restoration than the
conventional method.

Next, we show the validity of the proposed method by
comparing the PSNR and SSIM [23] with that for the con-
ventional method. We used two input imagesOldmanand
Fox as the ground truth HR images, i.e., we used the down-
scaled images of the input images with a factor of 2 as the
input LR images, to calculate the PSNR and SSIM [23]. Ta-
ble 2 itemizes the quantitative results of these scenes. The
results show that our method outperforms the conventional
method when comparing both the PSNRs and SSIMs [23].

We implemented the both weight optimization prob-
lems of the multiple exposure image integration and the
super-resolution using Matlab on PC with Intel Core i7
2.4GHz CPU, 8GB RAM. For a 200×200 image, the multi-
ple exposure image integration takes about 15 seconds. For
a 132× 100 image, the super-resolution takes about 20 min-
utes to finish our proposed algorithm on an average, while
the conventional method [14] spends about 18 minutes.
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Table 2 Comparison of PSNR and SSIM [23]

Turkan et al. [14] Proposed
Image PSNR SSIM PSNR SSIM

Oldman 31.32 0.8781 32.92 0.9217
Fox 29.03 0.7688 29.20 0.7858

5.3 Parameter setting

The weight optimization problem has the parameterα in
both of the cost functions (3) and (13), which determines the
relative balance between the fidelity and the regularization
terms. This is a user-defined parameter. The smoothness of
the resulting image varies depending on this value. In the
multiple exposure image integration experiments, we have
set 0.8 and 1.2 toα for the case of the AWGN and the actual
sensor noise, respectively. In the super-resolution experi-
ment, we have set 10−4 to α. In our experiments, for both of
the conventional and proposed methods, we have adjusted
the parameter to yield the best possible quality after some
trial-and-error for fair comparison.

6. Conclusion

We introduced a novel weight optimization scheme for mul-
tiple image integration in this paper. We proposed a weight
optimization scheme with a TV denoising method to gener-
ate a noiseless HDR image. The estimated optimal weights,
obtained by solving the proposed weight optimization prob-
lem using the PDS algorithm,can generate the noiseless
HDR image from noisy input images. We have shown the
validity of our method through our numerical simulations
for the images with AWGN and actual sensor noises. The
results showed that our method can reduce the noise in the
dark and bright regions more than when using the others,
while maintaining the details of the scene.

Additionally, as an application of the proposed weight
optimization scheme, we introduced the single-image SR
method based on the proposed pixel-wise weight optimiza-
tion. In this application, a HR image can be restored
from the weighted linear combination ofK-NN patches
with the optimal weights, which are obtained by solving
the proposed weight optimization problem in the LR patch
space and using simple up-sampling. The qualitative and
quantitative experimental results showed that the proposed
method achieved better restoration results than the conven-
tional method when using the pixel-wise weight optimiza-
tion scheme.
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