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ABSTRACT

We present an algorithm for the constrained design of FIR filters
with sparse coefficients. In general, the filter design approach aims
to minimize a filter order and maximize the filter performance. Al-
though the FIR filter coefficients designed by the LS method is op-
timal in the least squares sense, it is not necessarily optimal among
the set of filters with the same number of multipliers, that is, less
mean squared error can be achieved by a filter that has the same
number of multipliers, but has longer impulse response with some
zero-valued entries. Our method minimizes the number of nonzero
entries in the impulse response together with the least squares error
of its frequency response. We incorporate some constraints to the
design and realize better performance than conventional constrained
least squares design.

Index Terms— FIR filter design, coefficient sparsity,l0 approx-
imation

1. INTRODUCTION

The design of FIR filters is an important issue in digital signal pro-
cessing. Many design methods have been proposed by a number of
authors [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Especially the least-squares
(LS) method, which minimizes the mean squared error of frequency
responses, is widely used due to its simplicity and flexibility [5, 6, 7,
8, 9, 10].

In general, the filter design approach aims to minimize a filter
order and maximize the filter performance. Although the FIR fil-
ter coefficients designed by the LS method is optimal in the least
squares sense, it is not necessarily optimal among the set of filters
with the same number of multipliers, that is, less mean squared error
can be achieved by a filter that has the same number of multipli-
ers, but has longer impulse response with some zero-valued entries.
To minimize the number of multipliers instead of the filter order,
some approaches design the filter with zero-valued taps, which is of-
ten called sparse filters [11, 12] (Fig.1). In [12], an efficient design
method is proposed. However the method needs to design filters it-
eratively, and high computational effort is required for high order
filters. Our previous paper [13] proposes a design method for sparse
FIR filters which achieve a sub-optimal approximation in the least
squares sense and applies it to minimax design, but we do not con-
sider any constraints in the design.

In the LS design, large error often occurs near a cut-off fre-
quency. Adam et al. address the problem by adding constraints to the
filter design algorithm [14]. In the method, the error is reduced by
adding the peak error constraints to its frequency response without
having large transition bands. Other than that above, the constrained
least squares approximation can realize the flexible design, such as
flatness constraint atω = 0 [15, 16] or time domain constraints (e.g.
N-th band constraint [17]).

In this paper, we present a numerical approach for designing the
constrained sparse filters. Our method can design FIR filters by solv-

Fig. 1. Impulse response of sparse filters: ’x’ indicates zero coeffi-
cients.

ing the optimization problem which is formulated by adding a con-
straint in the frequency response and a sparsity in the coefficients
as regularization terms. Our method does not guarantee any opti-
mality in the sense of sparsity, but has better performance than the
conventional filter design methods.

In Section 2, the conventional weighted least squares and con-
strained least squares method for the FIR filters are briefly described.
In Section 3, our design problem is formulated and a design algo-
rithm that considers the sparsity of coefficients and the constraint for
peak errors is proposed. In Section 4, several examples are shown
to verify the validity of the proposed algorithm, and some compar-
isons with the conventional method are shown. In the last section,
we describe the advantages of the algorithm and conclude.

2. CONVENTIONAL METHODS

2.1. Weighted Least-Squares Method

The magnitude responseH(ω) of the linear phase FIR filters and
more general non-linear phase FIR filters can be written as a linear
combination of trigonometric basis functions

H(ω) =

N−1∑
n=0

anϕn(ω), (1)

where, for example,ϕn(ω) = cos(nω) for even-order symmetric
linear phase filters, andϕn(ω) = ejnω for more general formula.

Our design method can handle all types of the FIR filters ex-
pressed by (1), however due to the limited space, we show only the
case of the even-order symmetric linear phase FIR filters.

We here repeatH(ω) for the even-order symmetric filters:

H(ω) =

N−1∑
n=0

an cos(nω), (2)



whereN = (N0 − 1)/2 + 1 andN0 is its filter length.
Here we briefly review the conventional weighted LS (WLS)

method. Generally, the mean squared error of (2) over the interval
[0, π] is defined as

Φ1 =
1

π

∫ π

0

W (ω)|H(ω)−D(ω)|2dω, (3)

whereW (ω) is a weight function which is not identically zero and
has positive values, andD(ω) is a desired frequency response. The
optimal filter coefficients{an}N−1

n=0 in the LS sense can be uniquely
determined by solving the normal equation,Qa = p, wherea is a
filter coefficient vectora = [a0 a1 · · · aN−1]

T , and

pm = 1
π

∫ π

0
W (ω)D(ω) cos(mω)dω,

Qm,n = 1
π

∫ π

0
W (ω) cos(mω) cos(nω)dω,

(4)

wherepm andQm,n arem-th and (m,n)-th elements ofp andQ,
respectively.

WhenD(ω) andW (ω) are simple functions, Eqs. (4) can be
easily calculated in a closed form. However, commonly, the inte-
grals of (4) are difficult to derive if bothD(ω) andW (ω) are ar-
bitrary. Therefore, in practice, it is efficient to define the following
cost function which is expressed as the finite sum of the errors on the
discretized frequency points.

Φ2 =
1

L

L−1∑
l=0

W (ωl)|H(ωl)−D(ωl)|2

= ∥W(Ra− d)∥22, (5)

where the (l, k)-th elements ofR is

Rl,k = cos(kωl) and

d = [D(ω0) D(ω2) · · · D(ωL−1)]
T

W = diag{W (ω0) W (ω2) · · · W (ωL−1)}.
In this case,pm andQm,n of (4) in the normal equation are rewritten
as follows.

pm = 1
L

∑L−1
l=0 W (ωl)D(ωl) cos(mωl)

Qm,n = 1
L

∑L−1
l=0 W (ωl) cos(mωl) cos(nωl)

This is the most general WLS method for linear phase FIR filters.
WhenW (ω) is set to unity over[0, π], bestl2 filters with this error
weighting process (i.e. LS) has large peak errors near the band edges
(see Fig.2 (a)). Therefore,W (ω) is usually set to 0 in the transition
bands.

2.2. Orthogonal Matching Persuit

The classical sparse approximation problem is denoted by

argmin
s

∥s∥0 subject to∥y −Φs∥2 < ϵ,

wheres ∈ �M , andy ∈ �N andΦ ∈ �M×N , (M > N) is an
overcomplete dictionary. Its sub-optimal solution can be found by
greedy algorithms such as the orthogonal matching pursuit (OMP).
The OMP [18, 19] successively selects a column vector of the dictio-
naryΦ at each iteration which minimizes the residual approximation
error. Letting the set of indices of selected vectors beΓn, the algo-
rithm can be summarized as:

1. Setr1 = y, Γ1 = ∅ and iterate the following steps.

2. gi =< ϕi, r
n > for i ∈ Γn

3. i∗ = argmaxi|gi|
4. xn = (ΦT

nΦn)
−1(ΦT

ny)

5. rn+1 = y −ΦT
nxn

6. Γn+1 = Γn ∪ i∗

whereϕi is thei-th column vector ofΦ, andΦn is a selected dictio-
nary composed ofϕi (i ∈ Γn). The orthogonalization part in Step
4 can be efficiently calculated by the QR decomposition and Gram-
Schmidt orthogonalization for fast implementation. Both the OMP
and our proposed algorithms are sub-optimal methods. A major ad-
vantage of our method is the ease with which certain constraints can
be accounted for in the design. In our method, sparse coefficients
can be easily found by transforming a constrained problem to an un-
constrained one.

3. DESIGN ALGORITHM

The conventional WLS method is optimal in the LS sense among
filters with the same filter length. If one allows a longer filter length
with some zero coefficients, it can achieve better approximation than
the non-sparse filters with the same number of multipliers. Our goal
is to design such sparse filters.

3.1. l2-l0 based Approximation

Here we define∥a∥0 as the number of non-zero elements ina (It is
often called zero-norm orl0-norm, despite not satisfying the proper-
ties of the norm). Our aim is to approximate the desired frequency
response by the linear phase FIR filter with minimum number of
coefficients. To fulfill it, we define the filter design problem as a
process to minimize the cost function:

min
a

1

2
∥W(Ra− d)∥22 + β∥a∥0, s.t. La− k ∈ S (6)

whered is a desired frequency response and the parameterβ is in-
troduced to control the balance between the error of the filter and the
number of the coefficients, andLa − k ∈ S is a linear constraint
added toa, andS is a closed convex set.

We convert (6) to the following unconstrained problem by intro-
ducing the indicator functionι0.

min
a

1

2
∥W(Ra− d)∥22 + β∥a∥0 + ι0(La− k), (7)

whereι0(x) penalizes it if each elementxi of x is not in the convex
setS, that is,

ι0(x) =

{
0, if x ∈ S
+∞, if x /∈ S

. (8)

Since the second term of the cost function (7) is a discrete metric,
the problem is inherently difficult to solve by conventional methods
such as gradient decent based optimization.

We adopt a method based on the variable splitting and quadratic
penalty. Introducing auxiliary parameterss1 ands2 that correspond
the coefficientsa andLa − k, respectively, we convert the original
problem (7) to an equivalent form as

min
a,s1,s2

1

2
∥W(Ra− d)∥22 + β∥s1∥0 + ι0(s2),

s.t. ∥a− s1∥22 = 0, and

∥La− k− s2∥22 = 0 (9)



Instead of solving (7), we add the penalty terms∥a − s1∥22/2
and∥La − k − s2∥22/2 to the cost. In the end, our design problem
is stated as

min
a,s1,s2

1

2
∥W(Ra− d)∥22 + β∥s1∥0 + ι0(s2) +

γ1
2
∥a− s1∥22 +

γ2
2
∥La− k− s2∥22, (10)

whereγ1,2 are weighting parameters that balance the two terms.

3.2. Design Procedure

The strategy of the variable splitting approach is that, we start with
initial values for the auxiliary parameters, and then repeatedly solve
sub-problems. We describe design algorithms to fulfill the minimiza-
tion problem (10) hereafter.

We start with initial values fors01 ands02, and then repeatedly
solve (10) w.r.t.a, s1 ands2 as follows.

ak = argmin
a

1

2
∥W(Ra− d)∥22 +

γ1
2
∥a− sk−1

1 ∥22 +
γ2
2
∥La− k− sk−1

2 ∥22, (11)

sk1 = argmin
s1

β∥s1∥0 +
γ1
2
∥ak − s1∥22 (12)

sk2 = argmin
s2

ι0(s2) +
γ2
2
∥Lak − k− s2∥22 (13)

The first sub-problem (11) has a simple quadratic form with respect
to a. The solution is determined by differentiating (11) w.r.t.a and
setting it to 0, which results in (superscriptk is omitted hereafter)

a∗ = A−1b, (14)

where A = RTW2R+ γ1I+ γ2L
TL

b = RTW2d+ γ1s1 + γ2L
T (k− s2)

The optimal solution of the second sub-problem (12) is found
for each coefficient individually, that is, the problem is equivalent to
the minimization of the functionE(sn) for n = 0, 1, · · · , N − 1 as
follows

min
s1,n

E(sn) = βC(s1,n) +
γ1
2
(an − s1,n)

2,

(n = 0, 1, · · · , N − 1) (15)

wheres1,n is then-th element ins1, and the functionC that counts
the number of non-zero elements is defined as

C(s1,n) =

{
0 if s1,n = 0
1 if s1,n ̸= 0.

The solution is given by the well-known hard shrinkage:

s∗1,n =

{
0, a2

n < 2β/γ1
an, otherwise

(16)

The solution of (13) is obtained by the projection ontoS, which
is explained for a specific case in the next section.

We update the three parameters by solving (11)-(13), andγ1,2 is
increased during iterations to ensure the similarity between the auxil-
iary variables and their corresponding parameters. When the weights
γ1,2 increase,s1 ands2 get close toa andLa−k, respectively, and
then the cost function (10) approaches (7).

(a) (b)

Fig. 2. Example ofl2 filter (N0 = 61, the cut-off frequency is
0.3π): (a)Best unconstrainedl2 filter, (b)Best constrainedl2 filter
with δp = δs = 0.02

3.3. Constrained Filter Design

3.3.1. Peak Error Constraint

In the filter design, the least squares approximation with the peak
error constraint is useful for some applications. Adam et al. [14]
proposed a constrained least squares method. In this method, the
peak error of the filter can be significantly reduced with only a slight
increase in thel2 error, and later Selesnick et al. [20] proposes a
peak constrained design method with adaptive transition bands.

Thel2 problem with the peak error constraint for a lowpass filter
with a passband/stopband edgesωp, ωs is defined by

min
a

1

L

L−1∑
l=0

W (ωl)|H(ωl)−D(ωl)|2,

subject toL(ωl) ≤ H(ωl) ≤ U(ωl), ωl ∈ [0, ωp] ∪ [ωs, π].

(17)

Moreover,L(ω) andU(ω) are the specified lower and upper
bound functions respectively. These functions are given by

L(ω) =

{
1− δp, if ω ∈ [0, ωp]
−δs, if ω ∈ [ωs, π]

(18)

and

U(ω) =

{
1 + δp, if ω ∈ [0, ωp]
δs, if ω ∈ [ωs, π]

, (19)

whereδp andδs are the prescribed error bound in the passband and
stopband. The peak constrained filters (Fig.2 (b)) are designed by
solving (17). (For detail, see [14])

In our case, the sparse filter design with peak error constraints
are realized by setting some variables in (6) as

L = R, k = 0,
S = {x|L(ωl) ≤ xl ≤ U(ωl)}, l = 0, 1, · · · , L− 1

(20)

whereL(ωl) andU(ωl) are defined by (18) and (19) respectively. In
the end, the cost function to minimize is given by

min
a

1

2
∥W(Ra− d)∥22 + β∥a∥0 + ι0(Ra), (21)

The first two sub-problems (11) and (12) are solved by (14) and
(16), respectively. Similarly, the optimal solution of the third sub-
problem (13) is found for each frequency point individually, that is,

ι0 ((Ra)l) +
γ2
2
|(Ra)l − s2,l|2



where(Ra)l is l-th element of the vectorRa. One can easily find
that the solution for the above problem is given by the projection
onto the convex setS in (20) as

s∗2,n =

 U(ωl), if (Ra)l > U(ωl)
L(ωl), if (Ra)l < L(ωl)
(Ra)l, otherwise.

(22)

3.3.2. Other constraints

We can easily take into account other linear constraints in our frame-
work. For example, let us consider filters with flatness constraints at
a frequency point that have been widely studied [21]. TheM -th
order flatness constraint is generally given by

d(k)

dω(k)
H(ejω) = 0, 1 ≤ k ≤ M

The constraints are easily incorporated into the problem (6). The
N-th band filters are widely used to reduce intersymbol interference
in data communication [17]. The N-th band filter coefficients have
periodic zero values every N-th sample, except for the middle coef-
ficient. This time domain constraint is also expressed by the form of
(6).

3.4. Balance control

In the algorithm, the desired number of non-zero coefficients (de-
noted byNd) is specified by a user. The number of non-zero coeffi-
cients is determined by the parameterβ in the minimization problem
(6). However it is so hard to patently formulate the relationship with
β andNd. Thus we employ a heuristic approach, in whichβ adap-
tively changes in the iterations compared with the number of non-
zero coefficients. If the actual number of non-zero coefficients in an
iteration is larger thanNd, β is increased toru · β(ru > 1), other-
wiseβ is decreased torl · β(rl < 1), whereru, andrl are newly
introduced scaling parameters. When the number of the coefficients
reachesNd, thenβ is fixed.

4. EXPERIMENTAL RESULTS

In this section, numerical experiments are shown to verify the ad-
vantage of the proposed algorithm. All experiments were designed
in MATLAB. All frequencies are normalized byπ and frequency
points are equally spaced.

A low-pass filter with the cut-off frequency0.13π is designed.
The filter lengthN0 is 91 (N = 45) and the number of non-zero
coefficients isNd = 81. The passband and the stopband edges
ωp = 0.112 andωs = 0.168. The result is compared to the 80th
order non-sparse filter, which has the same number of multipliers
as our filter, designed by the conventional constrained least squares
(CLS) approach [14]. In both methods, the constraint parameters are
set toδp = δs = 0.02. Fig.3 illustrates the log-magnitude response
of filters which were designed by (a) the CLS and (b) the proposed
method respectively. Note that the error of amplitude with the de-
sired response is within the specified range in both of the methods.
We can achieve less mean squared error (2.31 · 10−2), compared
to the CLS (3.70 · 10−2), while the both methods have the same
maximum error. We tested hundreds of design examples, and all ex-
amples converge to filter with smaller errors than the conventional
CLS method. Some of them are listed in Table 1. Table 1 shows
that the proposed method outperforms CLS method in the squared
error. The result of our experiments clearly shows that the proposed
sparse filter approximation method can achieve flexibly design under

(a) (b)

Fig. 3. The log-magnitude response of the obtained filter: (left) CLS,
(right) proposed

(a) (b)

Fig. 4. The magnitude response of the obtained filter: (left) Conven-
tional method, (right) Our method

the specified constraint with lessl2 error. In our algorithm the de-
sign of 200-tap filter needs ten seconds to converge with Intel Core
i5 2.30GHz CPU.

One can easily apply our method to a filter with other con-
straints. As an example, we show the results of the filter with the
2nd order flatness constraint atω = 0 in Fig.4 (the linear scale
magnitude response is illustrated to show the flatness more clearly),
whereN = 41, Nd = 31, and the passband and stopband edges
areωp = 0.26 andωs = 0.34, respectively. Fig.4(a) is the 30th
order filter designed by [14] which results in the mean squared error
3.97 · 10−4, while the error of our result in Fig.4(b) is1.91 · 10−4.

5. CONCLUSION

We proposed the flexibility and excellent sparse filter. In the pro-
posed filter, the peak error is specified by the user, and then the better
approximation is achieved by the sparsity in the coefficients of the
filter. Compared with the conventional constrained filter, thel2 error
of the filter frequency response can be greatly reduced.

Table 1. Squared error (ωp: passband edge,ωs: stopband edge,N : filter
length,Nd: # of non-zero coeffs., all the two filters listed have same number
of non-zero coefficients)

(N0, N0 −Nd, ωp, ωs, δp andδs) CLS Proposed method
(61, 12, 0.264, 0.336, 0.02) 5.08e-3 4.79e-3

(91, 20, 0.1693, 0.2307, 0.009) 3.77e-3 3.51e-3
(121, 24, 0.1760, 0.2240, 0.007) 2.82e-3 2.65e-3
(181, 30, 0.2853, 0.3147, 0.007) 1.78e-3 1.70e-3
(271, 60, 0.2898, 0.3102 0.008) 1.26e-3 1.18e-3
(361, 60, 0.2925, 0.3077 0.007) 8.85e-4 8.64e-4
(481, 84, 0.2943, 0.3057, 0.006) 6.86e-4 6.60e-4
(541, 100, 0.2947, 0.3053 0.005) 6.24e-4 5.75e-4
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