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Abstract

A two layer coding algorithm for high dynamic range images is discussed. In the
first layer, a low dynamic range image is encoded by a conventional codec, and
then the residual information that represents the difference between an original
and the decoded images in the first layer is encoded in the second layer, which
realizes compatibility with conventional image file formats. Our method utilizes the
approximation of an inverse tone mapping function that reduces the high dynamic
range to a displayable range. Our algorithm significantly improves a compression
performance, compared to conventional methods.
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1 Introduction

Photographic films, negatives and positives, typically have a higher dynamic
range and larger color gamut than typical display devices such as CRT, LCD
and printers (1). Some of today’ s analog film scanners captures digital images
with larger dynamic range than standard 24 bit. CCD or CMOS sensors in
most of today’s cameras also can capture wider dynamic range of scene and
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additionally many cameras can output raw images as well as 24 bit images
compressed by JPEG, which have 12 to 16 bits for each RGB color component.

By adapting lights in any viewing condition, the human visual system can
perceive a wider range of radiance (about 14 log,, units) than the one that can
be captured by these sensors. In the last decade, to capture the high dynamic
range of natural scene brightness, techniques have been proposed based on
the multi-exposure image principle (2) - (6). A work done by Mann et al. (2)
has proposed a method for merging multiple photographs shot with different
exposures, which realizes very high dynamic ranges. Devebec et al. (3) has
also proposed a method to create High Dynamic Range (HDR) Images (e.g.
contrast ratio of 10'° : 1) and applied to high quality image based lighting.

Instead of merging low dynamic range images off line, some sensors that can
directly capture the full dynamic range of a scene are being developed (such
as Viper, SMal) (7). In addition, similar researches has been done for the
development of vision chips, (8), (9), which realizes 120-200 [dB] of dynamic
range by controlling shutter speed on line.

The HDR imaging inspires many applications such as high quality CG ren-
dering, in-vehicle sensors, camera surveillance, digital negative developments,
etc, but it is not displayable for conventional output devices. Many researches
have proposed ”tone mapping operations”, in which the dynamic ranges of
the HDR images are reduced to displayable ranges (10)-(17). These opera-
tions aim at reducing the high dynamic range without loss of detail. Thus
although these discard a significant amount of information, one may estimate
the loss by utilizing the obtained low dynamic range images.

Since the sizes of the HDR images are often huge, development for functional
compression is one of the research topics. The image coding standard, JPEG
2000, provides seamless compression from 1 to 16 bits per color channel (18).
Ruifeng et al.’s scheme (20) verifies the validity of JPEG2000 for the high dy-
namic range images. An HDR video compression scheme which uses MPEG2
has also been proposed (22). Spaulding (24), (25) proposes a two layer en-
coding for gamut extended images. In the first layer, an image with clipped
gamut is encoded. And then in the second layer, the residual information
that represents the difference between the original gamut extended image and
the decoded image in the first layer is encoded. The main advantage of this
approach is that the format is backward compatible to existing file formats,
and no extra efforts are needed to extract the 24 bit image. In the field of
Computer Graphics, similar concepts are adopted for the high dynamic range
image compression (26), (27).

In this paper, we extend and elaborate on the conventional two-layer coding
methods (24) - (27). We approximate a tone mapping function that reduces



dynamic ranges of the HDR images to displayable ranges by a single func-
tion. We encode the difference between the HDR image and its tone mapped
version, indicated as Low Dynamic Range (LDR) Image. This approximation
significantly improves coding efficiency.

In Section 2, previous work related to our method is summarized. The outline
of the proposed algorithm is explained in Section 3. The approximation of the
tone mapping function, that is a key of our method, is discussed in Section 4,
and some details of the adopted compression scheme is introduced in Section
5. Finally we evaluate the validity of our method with some experimental
results.

2 Previous Work

There are some types of file formats designed for the HDR images. The well-
known RGBE format spends one byte each for mantissa of RGB colors and one
common exponent (E) component, that is F = [log,(max(Rw,Gw, Bw)) +
128]. LogLuv format(28) converts RGB colors to the logarithm of luminance
and the u, v channels, and then uses 16 bits for the luminance, 8 bit each for
the u and v channels. In these two formats, each channel is then losslessly com-
pressed by the run length coding. OpenEXR/(29) represents each of the RGB
channels by the sign bit, mantissa, and exponent with 16 bits, similar to IEEE
floating point. This achieves ”almost lossless” representation and have options
for some compression schemes, such as run-length coding and wavelet-based
lossless coding. These three formats intend to preserve as much information as
possible, and do not exploit correlation and human visual system very much.

The HDR images often contain a large amount of information and hence it
is time-consuming to retrieve them from a storage device and/or to down-
load them through the network. Thus the demand for lossy compression that
achieves higher rate-distortion performance increases. The conventional HDR,
lossy compression schemes are categorized in two types: one layer and two
layer compressions. The JPEG-HDR(26) proposed by Ward and Simmons is
a first attempt for the two layer compression, which has a compatibility with
the conventional 24 bit image formats such as JPEG. That is, a tone mapped
24 bit image is first encoded by JPEG and then the ratio between the image
and the original HDR is encoded and stored in a user-available buffer of the
JPEG wrapper. The decoder can not only extract the conventional JPEG im-
age, but it can also recover the HDR image from the side information. Since
the operations to create the LDR from the HDR images consists of the tone
mapping, gamut clipping, quantization, and these operations are often com-
plicated and may not be open for the public, the compatibility is preferable
in many applications. A similar idea has been previously proposed to encode



raw images of digital cameras by Spaulding (24) and (25). They extend the
dynamic range and color gamut by applying an inverse nonlinearity to the
LDR images, and then encode the difference between the extended images
and the original HDR images. In the conventional two layer algorithms, they
pay little attention to tone mapping operation that transforms the HDR image
to the 24 bit version. To our knowledge, only (27) tackles this problem. They
compute a reconstruction function implemented with Look Up Table (LUT)
that represents the inverse tone mapping and then compensate the difference
of the two images. Although the LUT-based method approximates the tone
mapping curve well, the approximation is not smooth. The lack of smoothness
may yield extra energy in high frequency, which is not desirable in a sense of
compression efficiency.

Although the one layer coding is superior in a sense of compression efficiency,
these two layer coding has an advantageous property of the compatibility
with the 24 bit image formats, that is, 24 bit image is encoded by the existing
method such as JPEG in the first layer. Mantiuk et al propose a HDR video
compression scheme based on the MPEG codec (22). They derive an optimal
quantization strategy using the threshold versus intensity functions of the
human visual systems, and quantize the full dynamic ranges to 8 bit before
MPEG encoding. Xu et al. (20) apply JPEG2000 to the HDR images. They
transform an image to logarithm domain, quantize to 12-bit integers, and then
input it to the JPEG2000 encoder. Although their method does not have the
compatibility with the 24 bit images, its compression efficiency outperforms
others.

Our framework is a similar to (26) and (27), that is, the proposed algorithm
also consists of the two layers with the 24-bit image compatibility. The rest
of this paper describes our algorithm based on the inverse tone mapping and
shows our method outperforms the conventional methods.

3 Summary of the Algorithm

3.1  Brightness v.s. Luminance Nonlinearity

Camera raw images, in which current values obtained from CMOS or CCD
sensors are stored in pixels without any image processing, have 12 to 16 bits
for each color channel. The pixel values in the raw image are proportional to
actual luminance. In the field of CG, they propose several methods to create
higher dynamic range (HDR) images by combining the series of multi-exposure
photos(3)-(4). For each pixel, radiance is calculated by estimating the camera
response curve and compensating the in-camera nonlinear operations. Thus



these pixel values are also proportional to luminance. Thus the operation that
maps the HDR image to a 24 bit 'output referred’ image more or less resembles
the work of the human that perceives brightness.

It is widely agreed that there is a nonlinear relationship between an amount of
sensation and intensity of lights, or in other words, brightness human perceives
and actual luminance are not linearly related. There are many experimental
results for the approximation of the nonlinearity. The well known Stevens’
power law indicates that the relationship between them is modeled by

y=k(z-0C)" (1)

where y and x are brightness that human retina perceives and input lumi-
nance, respectively. This model provides accurate approximation of the visual
response in a limited range, but is not reliable outside the range where the
response is saturated. To model the response of the rod and three types (LMS)
of cones on Retina in such a wider range, a s-shape function is utilized (Fig.1).

Response

Luminance in log scale

Fig. 1. Response of cones/rods in an adaptation luminance: The curve shifts hori-
zontally depending on different adaptation luminance.

Most of the tone mapping operators (and camera film developments) take
into account the nonlinearity of the human perception models. Thus, if the
tone mapping operations are well estimated by a simple function, the HDR
images can be reconstructed by the tone mapped version. This is the key of
our method.

3.2 Qutline of Proposed Method

The proposed method realizes the two-layer compression similar to (26). That
is, starting from the original HDR, a tone mapped image (LDR) is generated
or given as input, and then encoded by using JPEG. A residue information
is also encoded in order to enable the reconstruction of the HDR from the
knowledge of its LDR representation. The most significant difference from the
conventional methods is the use of an Inverse Tone Mapping Function (ITMF).
Fig.2 depicts the encoding and decoding steps. Our method assumes that an



original HDR and its tone mapped LDR image are given as inputs. The LDR
image is encoded by JPEG, followed by JPEG decoding. The intensity Y is
transformed by the ITMF to expand the reduced dynamic range. Then we
compare it with the intensity of the HDR image and calculate a residue. The
residue is encoded by the wavelet-based image compression. The ITMF used
here is image-dependent function. Thus the parameters to describe the ITMF
are calculated using the given two images on line and then they are sent to
the decoder as well as the encoded LDR and the residue. At low bit rates,
only the intensity of the HDR image is encoded and the chroma is estimated
by the LDR image. At higher bit rate, color difference between the HDR and
the LDR with color compensation is compressed by the wavelet. Each step is
explained in more detail in the following sections.

4 Image Dependant Inverse Tone Mapping Function

4.1 Inverse Tone Mapping Function

We call the procedure for converting an HDR to LDR image, the Tone Map-
ping (TM), and the inverse procedure of the TM, the Inverse Tone Mapping
(ITM). In this section, we treat the problem of finding the Inverse Tone Map-
ping Functions (ITMF), given an image pair of HDR and tone mapped LDR.
Our attempt here is to closely approximate the relationship between HDR, and
tone mapped LDR by ITMF, which will improve a coding efficiency.

Many tone mapping algorithms have already been proposed. In some methods,
global operations are applied to the HDR image. Some other algorithms locally
map each pixel of HDR to LDR. (A comprehensive review of the existing tone
mapping operations can be found in (7).) Although the local tone mapping
operations can not inherently described by a function, many of them can be
approximated by the s-shape. Thus regardless of which type of mapping is
actually used to create the LDR image, in this paper, we approximate it only
by a single function.

As is pointed out in Fig.1, the response of the retina is well approximated
by the s-shape function. To fairly approximate the s-shape, we have adopted
the Hill function after testing other functions such as polynomials, sigmoid
functions. The formula of the Hill function f is given by

xn

y=f) =0 (2)

where the function is normalized by 1. This function is also known as the
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Fig. 2. Outline of Our Method

Naka-Rushton equation or the Michaelis-Menten equation.
The function has some desirable properties:

(1) By using the function one can easily express the s-shape with long satu-
rated regions
(2) For x > 0 and k£ > 0, the function monotonically increases (see Ap-



pendix).

(3) Response is controlled by only two parameters, n and k.

(4) In the log domain, the inverse of the function is linear to the two param-
eters log(k) and 1/n, which will be further discussed later.

The first two properties are preferable for the approximation of the response
of the retina, while the others make it easy to design and handle the inverse
tone mapping functions. Further discussion on this function in a viewpoint of
human perception can be found in (30) and (31).

4.2 Closed Form Solution

Here we derive the ITMF to convert the LDR to HDR, which is optimal in
least squares sense. The inverse of f in (2), g = f ! is given by

3=

)
Then the conversion from LDR to HDR image by the ITMF is expressed as

£,(i.J) ) ”

Hy (0,9) = 9(£,(0,)) = k (m

where H, (i, j) and L, (4, j) is the luminance Y of the reconstructed HDR image
and the LDR image, respectively. Then we define the error between H, (i, j)
and the original HDR image H, (7, j) by

e(i,j) = log(H, (1, j)) — log(H, (i, j)) (5)

The error in the log domain put more weights on low luminance. This metric
matches human perceptions more and suppress the overestimate of high lu-
minance. Moreover it linearizes the function w.r.t. the parameters log(k) and
1/n as follows.

(6)

log(H,(i,7)) = log(k) + % log <M>

1 _'C(Zaj)

Then the design problem of ITMF is stated as the minimization of the mean
squared error of (5),



F= 7 > e(i, j)?

_ % 2} {log(?—ty(i,j)) —log(k) — %log (%) }2 , (7)

where M is the number of pixels. Since (7) is a quadratic form with respect
to log(k) and 1/n, the optimum solution that minimizes (7) is uniquely deter-
mined. In the end, solving the two equations

oF
olog(k))

OF
aijm " ®)

yields a closed form solution

(3, Vi) (i Xig) — (4, Yig) (i XiyYiy) }
M(Ei,j Yf]) - (Ei,j Y;',J')Q (9)
— M(Ei,j Yz,ZJ) - (Zi,j Yi,j)2
M3, ; Xi;Yig) — (3 Yig) (Xi,; Xig)

k = exp

where

£y(27])

Xi; =log(H,(:,7)), Yi;=Ilog
= 1oy (1.9), ¥iy = log T2

(10)

In the tone mapping procedures, to reduce the dynamic range of the HDR
images, special attention should be paid for bright area (luminance more than
a few thousands in cd/m?), where human sensitivity is saturated. The sim-
plest operation is to clip the values higher than a threshold and they are
mapped to 255. To improve the quality, more sophisticated operations have
been proposed(7), in which the local operators determine the mapping depend-
ing on the neighbors of each pixel. Due to these, the approximation described
in this section often fails in the bright regions, especially in the case that the
LDR images are coarsely quantized by the JPEG. Fig.3(a) shows the plot
of the LDR pixel values versus the HDR pixel values in corresponding posi-
tions. One can see from this figure that the variance of the HDR pixel values
increases as the luminance gets high. Due to this, in the bright area the opti-
mal approximation in least squares sense does not necessarily give an optimal
compression performance. Thus, in our algorithm we simply approximate the
bright area by a first order polynomial. Fig.3(b) shows the obtained ITMF. In
this example, the region £,(4, j) € [0, a] is approximated by the hill function
and the linear mapping is done in £,(4, j) € (a, 1] (in this paper, we suppose



that LDR images are normalized to 1). The boundary a is determined as fol-
lows. Fist we divide the region of the LDR intensity [0, 1] to @ bins. For each
bin, the variance of HDR intensity in corresponding positions, 03 = var(H,),
qg=1,2,---,Q), where

q= 1727"'7Q'

Next we find the smallest value ¢* that satisfies

2 2
U(]* > C- O—th"

and then we set

a=(¢"—1)/Q,

where o7, is a variance of the HDR image and ¢ is a constant. For most
examples, it works well with ¢ = 0.01.
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5 HDR coding algorithm
5.1 Residue Compression

As explained in the previous section, the luminance of the LDR image is
transformed by the ITMF in (4). Then the residual image R is created by
using the original HDR image, H, (i, j) and the transformed image, (i, j):

R(i,j) = (My (11)

H) (i,7) + €

where v is a constant less than 1. When both of the two images, H,(7, j)
and, H; (i, j) have very small values, slight difference between them will be
overvalued by (11) more than the case that they have large values. Thus this
division process implicitly weights the small pixel values more. v in (11) plays
a role in relieving this weight effect. € is introduced to prevent the values from
being too large when #, (i, j) approaches to zero.

Then the image is reconstructed in the decoding steps by

Hy(i,5) = R(i, J)

==

(Hy (i, 5) +€), (12)

where H,, is the decoded image.

5.2 Color Compensation

In (26), Ward et al. point out that if the TM operation preserves hue of an
HDR image, and its saturation change is estimated, then the chroma of the
original HDR can be fairly recovered from its LDR by the saturation com-
pensation. The Ward et al’s compensation method works well. However it
cannot be directly applied to our method since we use the inverse tone map-
ping operation. Instead our algorithm adopts different two color compensation
schemes: one is modified Ward et al’s method and the other is the proposed
color compensation based on polynomial approximation. We first introduce
the modified Ward’s scheme for comparison.

11



5.2.1 Modified Ward et al’s Compensation Scheme

In (26), the compensated saturation is given by

Sc(zaj) = a{Sﬁ(iaj)}/B )

where S, is the saturation of the LDR image. For the definition of the satu-
ration, we follow (26):

S =1-min{R,G, B}/Y.

In this framework, we basically adopt the Ward et al’s method described in
(26). Only difference from (26) is that we calculate the optimal parameters o
and [ that minimizes

Es = Ez,]{logsﬂ(zaj) - IOg 50(7’7])}2

(13)
= El’]{lOgS’H(Z,]) —loga — Blog Sﬁ(l,])}2

Since this error is a simple quadratic form of the two parameters log o and f3,
then the minimization of (13) yields the closed form solution

(Zz‘,j Yzzg)(zzg Xi,j) - (Zz’,j Yz’,j)(zi,j Xi,jYi,j) }
M(Zi,j Y;?j) - (Ei,j Yi,j)2

o = exp

14
5= MY ; Xi;Yi;) — (2, Yiy) (2, Xiyj) (14)
M(Ei,j YzQJ) - (Ei,j Y;',j)z ,
where

5.2.2  Proposed Color Compensation

Assume the relation between that RGB values of the HDR and LDR, images
is approximated by a polynomial,

y =p(z) = Z cpa”, (16)

then we simply apply this to the LDR image, that is,

Li(i,7) = p(L,(i,7)), for channel R (17)

12



The function p can be determined by a simple least squares method that
minimizes the following cost function, that is, total summation of the weighted
suqared errors for the red, green and blue channels:

By = Yacprgn Liglw(i, 7) (Ha(i, §) — La(1,5)) ) (18)
=c'L"Le, —2¢'L"H + H'H,

where w is a weight function defined on the pixels. The matrices of (18) are
defined by

T
C:[CO Cl o s CN],
LU Ll LN
_ 0 1 N
L=|L0 L) - L],
Lg L; L,],V

H=[H H H]|,

whre L}, Ly, Ly, H,, H,, and H, are

.. n .. n L n T
Ly, = [w(i, §)L0,4(0,0) w(i, j)Lr,,(0,1) wi, j)Lr,,(0,2) -],

r.g,b T

Hr,g,b = [U}(Z, j)%r,g,b(oa 0) 'UJ(?:, j)%r,g,b(oa 1) UJ(Z, j)%r,g,b(oa 2) o ']T :

In the end the coefficients are determined by solving a linear equation

(LTL) c, = L'H

We adopt the Gaussian function for the weight w, that is, small pixel values
are weighted more than large values. Note that its coefficients are transformed
to the decoder as a side information.

After all the colors are compensated by (17), we decompress the dynamic
range as follows

y /1 [ -

_ H! (e,
Hi(i,7) = LE(4,7) ﬁf((z j)), for channel R, (19)

Y

where 7 (i, ) is the decoded luminance Y of the HDR image and L (i, j)
is the luminance of the LDR image after the compensation (17). The same

13



procedure is done for G and B channels as well. This procedure maps the color
of the LDR to the HDR image.

In a low bit rate, one can spend all bits for the intensity #,, and the chroma
is compensated by (19). In high bit rates, however, it often gives better re-
sults to encode chroma as well. The color encoding is required when the tone
mapping operator drastically changes the colors. Thus in the high bit rates,
our scheme encodes the chroma difference between the original HDR and color
compensated HDR given by (19) as well.

6 Experimental Results

We have tested dozens of HDR images collected from some web sites, many of
which are frequently used as sample images. Since the HDR images may have
very bright and dark areas in that human do not even perceive luminance
change, conventional error metrics (e.g, mean squared error, snr) are not re-
liable. Fig. 4 illustrates two HDR images with a same snr. One can see much
degraded area in the right image. This often happens since errors in highlight
area are overestimated by the snr. Thus we instead use two other metrics, the
Mean Distance (MD) in CIELAB color space to evaluate color appearance
differences, and the Mean Squared Error (MSE) with Daly’s nonlinearity. The

Fig. 4. Reconstructed raw images with a same PSNR (To display, the images are
gamma corrected).

CIELAB (also called CIE 1976 L*a*b*) is a well known uniform color space,
which is one of the most reliable evaluation for color images. We use the mean
of the absolute difference in this space for color difference evaluation, that is,

Eip = % Z \/(Ll(za]) - L2(Za]))2 + (al(iaj) - aQ(iaj))Q + (bl(za]) - bQ(Zaj))Q(ZO)

14



To evaluate only the luminance, we first transform the intensity with Daly’s
nonlinearity (32)

T

DN(z) = 5 5o

(21)

Then we calculate the mean squared error

Emge = 7 Jz {DN(¥:(i.9)) = DN (Ya(i. i)} (22)

First we test the performance on several images (see Fig.5), and compare
it with Ward et al’s JPEG-HDR (26). This method encodes the luminance
residue, while colors are recovered from saturation information of the LDR
image. For fair comparison, we use exactly the same jpeg images as the LDR
images for input. We spend all the bits for luminance compression, and we do
not encode other color channels. Fig.6 shows comparisons for some images ! .
At very low bit rates, our method is comparable or even worse, but at high
bit rates our method gains significant improvements.

Fig.7 shows a comparison with the most recent HDR coding method (27). This
method is designed mainly for HDR video compression, but it also gives high
performances for still images. The plots indicate the results of ”Memorial”
images 2. In these experiments, we use Reinhard et al.’s global tone mapping
operator (12) to make LDR images, and we allocate 75 % of bits for the
intensity and the rest of them for chroma difference encoding. From these
figures, it can be seen that our algorithm performs better than (27).

We compare the two methods described in Section5.2. The solid line in Fig.8
depicts the result of the proposed polynomial-based color compensation. The
dotted line is the one of the modified Ward et al’s method with the optimal
gamma. In this simulation, 70 % of residual bits are used for the intensity
and the rest are used for chroma difference. Especially at high bit rates, our
method gives better results.

The proposed algorithm was tested on the several tone mapping operators,
(12), (13), (14), and (15). Although it can be seen that the compression per-
formance depends on tone mapping operators especially for MD in CIELAB,
the algorithm works well for a wide variety of tone mapping operations.

L' The results are obtained using a software the authors provide
2 These data are provided by the authors

15



7 Conclusion

A two layer coding algorithm for high dynamic range images has been pro-
posed. Our approximation of the tone mapping operation using the Hill func-
tion significantly improves the coding efficiency compared to other state of the
art coding methods.
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Appendix

The Hill function (2) is rewritten as

The derivative of f yields

df(z) _ (1+ (E)n)% B e (D)
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Thus, when £ > 0 and x > 0, then d’;(;”) = 0 holds and the function monoton-
ically increases.
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