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ABSTRACT

A two layer coding algorithm for high dynamic range images is dis-
cussed. In the first layer, a low dynamic range image is encoded by
a conventional codec, and then the residual information that repre-
sents the difference between an original and the decoded images in
the first layer is encoded in the second layer, which realizes compat-
ibility with conventional image file formats. Our method utilizes the
approximation of an inverse tone mapping function that reduces the
high dynamic range to a displayable range. Our algorithm signifi-
cantly improves a compression performance, compared to conven-
tional methods.
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1. INTRODUCTION

Since the sizes of the HDR images are often huge, development for
functional compression is one of the research topics. The image cod-
ing standard, JPEG 2000, provides seamless compression from 1 to
16 bits per color channel [5]. Xu et al.’s scheme [6] verifies the va-
lidity of JPEG2000 for the high dynamic range images. An HDR
video compression scheme which uses MPEG2 has also been pro-
posed [8]. Spaulding [10] proposes a two layer encoding for gamut
extended images. In the first layer, an image with clipped gamut is
encoded. And then in the second layer, the residual information that
represents the difference between the original gamut extended im-
age and the decoded image in the first layer is encoded. The main
advantage of this approach is that the format is backward compatible
to existing file formats, and no extra efforts are needed to extract the
24 bit image. In the field of Computer Graphics, similar concepts are
adopted for the high dynamic range image compression [11], [12].

In this paper, we extend and elaborate on the conventional two-
layer coding methods [10] - [12]. We approximate a tone mapping
function that reduces dynamic ranges of the HDR images to dis-
playable ranges by a single function. We encode the difference be-
tween the HDR image and its tone mapped version, indicated as Low
Dynamic Range (LDR) Image. This approximation significantly im-
proves coding efficiency.
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2. ACQUISITION OF HDR IMAGES

The HDR images are synthesized using multiple images with differ-
ent exposures. Compensating the motion between the images is a
challenging problem. Kang et.al [7] proposes the motion estimation
for HDR video synthesis. Our acquisition algorithm is also based
on a simple motion compensation algorithm in which the motion is
estimated by block matching. In our block search, the error of expo-
sure is calculated instead of pixel values, that is a key of our method.
Fig.1 depicts the results compared with the state of the art software
”Photomatix”’. One can see from the figure that the motion is well
compensated in our method.

Fig. 1. (left) Our HDRI, (right) Photomatix

3. HDR IMAGE CODING

3.1. Summary

The proposed method realizes the two-layer compression similar to
[11]. That is, starting from the original HDR, a tone mapped im-
age (LDR) is generated or given as input, and then encoded by using
JPEG. A residue information is also encoded in order to enable the
reconstruction of the HDR from the knowledge of its LDR represen-
tation. The most significant difference from the conventional meth-
ods is the use of an Inverse Tone Mapping Function (ITMF). Fig.2
depicts the encoding steps. Our method assumes that an original
HDR and its tone mapped LDR image are given as inputs. The LDR
image is encoded by JPEG, followed by JPEG decoding. The inten-
sity Y is transformed by the ITMF to expand the reduced dynamic
range. Then we compare it with the intensity of the HDR image and
calculate a residue. The residue is encoded by the wavelet-based im-
age compression. The ITMF used here is image-dependent function.
Thus the parameters to describe the ITMF are calculated using the

Thttp://www.hdrsoft.com/



given two images on line and then they are sent to the decoder as
well as the encoded LDR and the residue. At low bit rates, only the
intensity of the HDR image is encoded and the chroma is estimated
by the LDR image. At higher bit rate, color difference between the
HDR and the LDR with color compensation is compressed by the
wavelet. Each step is explained more in detail in the following sec-
tions.
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Fig. 2. Outline of Our Method
3.2. Image Dependant Inverse Tone Mapping Function

We call the procedure for converting an HDR to LDR image, the
Tone Mapping (TM), and the inverse procedure of the TM, the In-
verse Tone Mapping (ITM). In this section, we treat the problem of
finding the Inverse Tone Mapping Functions (ITMF), given an image
pair of HDR and tone mapped LDR. Our attempt here is to closely
approximate the relationship between HDR and tone mapped LDR
by ITMF, which will improve a coding efficiency.

Many tone mapping algorithms have already been proposed. In
some methods, global operations are applied to the HDR image.
Some other algorithms locally map each pixel of HDR to LDR. (A
comprehensive review of the existing tone mapping operations can
be found in [3].) Although the local tone mapping operations can
not inherently described by a function, many of them can be approx-
imated by the s-shape. Thus regardless of which type of mapping is
actually used to create the LDR image, in this paper, we approximate
it only by a single function.

The response of the retina is well approximated by the s-shape
function. To fairly approximate the s-shape, we have adopted the
Hill function after testing other functions such as polynomials, sig-
moid functions. The formula of the Hill function f is given by
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where the function is normalized by 1. This function has some de-
sirable properties:

1. By using the function one can easily express the s-shape with
long saturated regions

2. For x > 0 and k > 0, the function monotonically increases
(see Appendix).

3. Response is controlled by only two parameters, n and k.

4. In the log domain, the inverse of the function is linear to the
two parameters log(k) and 1/n, which will be further dis-
cussed later.

The first two properties are preferable for the approximation of the
response of the retina, while the others make it easy to design and
handle the inverse tone mapping functions. Further discussion on
this function in a viewpoint of human perception can be found in
[13] and [14].

3.3. Closed Form Solution

Here we derive the ITMF to convert the LDR to HDR, which is opti-
mal in least squares sense. The inverse of f in (1), g = f ! is given

by )
=g =k (1L)" ®

Then the conversion from LDR to HDR image by the ITMF is
expressed as

Hy(id) = o6,y =k (200 )

where 1, (i, j) and Ly (4, §) is the luminance Y of the reconstructed
HDR image and the LDR image, respectively. Then we define the
error between H, (¢, j) and the original HDR image H, (%, j) by

e(i, ) = log(Hy (i, 7)) —log(H, (i, 1)) Q)

The error in the log domain put more weights on low luminance.
This metric matches human perceptions more and suppress the over-
estimate of high luminance. Moreover it linearizes the function w.r.t.
the parameters log(k) and 1/n as follows.
. 1 Ly (i,5)
log(H, =log(k) + —1 — e 5
o8, 6.3) =log(h) + T1og ((2L) )

Then the design problem of ITMF is stated as the minimization
of the mean squared error of (4),

E= 23 elig)’ ©)

where M is the number of pixels. Since (6) is a quadratic form with
respect to log(k) and 1/n, the optimum solution that minimizes (6)
is uniquely determined. In the end, solving the two equations
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yields a closed form solution for n and k.

In the tone mapping procedures, to reduce the dynamic range
of the HDR images, special attention should be paid for bright area
(luminance more than a few thousands in cd/m?), where human
sensitivity is saturated. The simplest operation is to clip the values
higher than a threshold and they are mapped to 255. To improve
the quality, more sophisticated operations have been proposed[3], in
which the local operators determine the mapping depending on the
neighbors of each pixel. Due to these, the approximation described
in this section often fails in the bright regions, especially in the case
that the LDR images are coarsely quantized by the JPEG. Fig.3(a)




shows the plot of the LDR pixel values versus the HDR pixel val-
ues in corresponding positions. One can see from this figure that the
variance of the HDR pixel values increases as the luminance gets
high. Due to this, in the bright area the optimal approximation in
least squares sense does not necessarily give an optimal compres-
sion performance. Thus, in our algorithm we simply approximate
the bright area by a first order polynomial. Fig.3(b) shows the ob-
tained ITMF. In this example, the region £,(Z,j) € [0, a] is ap-
proximated by the hill function and the linear mapping is done in
Ly(%,5) € (a, 1] (in this paper, we suppose that LDR images are
normalized to 1). The boundary a is determined as follows. Fist
we divide the region of the LDR intensity [0, 1] to @ bins. For
each bin, the variance of HDR intensity in corresponding positions,
o; =var(H),q=1,2, - ,Q, where

Hy={Hy(,5)| 4,5, (¢—1)/Q < Ly(4,5) < q/Q}
q:1727"' 7Q'

Next we find the smallest value ¢* that satisfies 03* >c-oly,and
then we set a = (¢* — 1)/Q, where o}, is a variance of the HDR
image and c is a constant. For most examples, it works well with
c¢=0.01.
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Fig. 3. Approximation by ITMF
3.4. Residue Compression

As explained in the previous section, the luminance of the LDR im-
age is transformed by the ITMF in (3). Then the residual image R
is created by using the original HDR image, #, (¢, ) and the trans-
formed image, H, (¢, j)

- Hy(irg) )"
where v is a constant less than 1. When both of the two images,
., and H;, have very small values, slight difference between them
will be overvalued by (8) more than the case that they have large
values. Thus this division process implicitly weights the small pixel
values more. v in (8) plays a role in relieving this weight effect. € is
introduced to prevent the values from being too large when My, (2, 5)
approaches to zero.

Then the image is reconstructed in the decoding steps by

Hy (i, 5) = RG, §)7 (M0, 5) +€), ©)

where H,, is the decoded image.

3.5. Color Compensation

n [11], G. Ward et al. point out that if the TM operation preserves
hue of an HDR image, and its saturation change is estimated, the

chroma of the original HDR can be fairly recovered by its LDR by
the saturation compensation. Our algorithm adopts a different color
compensation scheme. Assume the relation between that RGB val-
ues of the HDR and LDR images is approximated by a polynomial,

N
y=p(x)=)Y_ cua", (10)
n=0

then we simply apply this to the LDR image, that is,

L5(i,7) =p(L,(3,7)), forchannel R (11)
The function f can be determined by a simple least squares method,
and its coefficients are transformed to the decoder as a side informa-
tion.

After all the colors are compensated by (11), we decompress the
dynamic range as follows

#, (i, 4)
£,(,5)

where H, (i, §) is the decoded luminance Y of the HDR image. The
same procedure is done for G and B channels as well. This proce-
dure maps the color of the LDR to the HDR image. In a low bit
rate, one can spend all bits for the intensity H,, and the chroma is
compensated by (12). In high bit rates, however, it often gives bet-
ter results to encode chroma as well. The color encoding is required
when the tone mapping operator drastically changes the colors. Thus
in the high bit rates, our scheme encodes the chroma difference be-
tween the original HDR and color compensated HDR given by (12)
as well.

(i, 5) = L5(i,5) for channel R, (12)

4. EXPERIMENTAL RESULTS

We have tested dozens of HDR images collected from some web
sites, many of which are frequently used as sample images. Since
the HDR images may have very bright and dark areas in that human
do not even perceive luminance change, conventional error metrics
(e.g, mean squared error, snr) are not reliable. Thus we instead use
two other metrics, the Mean Distance (MD) in CIELAB color space
to evaluate color appearance differences, and the Mean Squared Er-
ror (MSE) with Daly’s nonlinearity. The CIELAB (also called CIE
1976 L*a*b*) is a well known uniform color space, which is one
of the most reliable evaluation for color images. We use the mean
of the absolute difference in this space for color difference evalua-
tion. The second metric evaluates only the luminance. To do this we
first transform the intensity with Daly’s nonlinearity [15]. Then we
calculate the mean squared error.

First we test the performance on several images and compare it
with Ward et al’s JPEG-HDR [11]. This method encodes the lumi-
nance residue, while colors are recovered from saturation informa-
tion of the LDR image. For fair comparison, we use exactly the same
jpeg images as the LDR images for input. We spend all the bits for
luminance compression, and we do not encode other color channels.
Fig.4 shows comparisons for some images 2. At very low bit rates,
our method is comparable or even worse, but at high bit rates our
method gains significant improvements.

2The results are obtained using a software the authors provide



Fig.5 shows a comparison with the most recent HDR coding
method [12]. This method is designed mainly for HDR video com-
pression, but it also gives high performances for still images. The
plots indicate the results of ”Memorial” image . In these experi-
ments, we use Reinhard et al.’s global tone mapping operator [4] to
make LDR images, and we allocate 75 % of bits for the intensity and
the rest of them for chroma difference encoding. From these figures,
it can be seen that our algorithm performs better than [12].
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