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ABSTRACT

When taking a photograph of a high dynamic range scene,
saturation of pixel values (that is under/over-exposure) often
occurs due to the narrower dynamic ranges of commercial
cameras. It is possible to solve the problem of the under/over-
exposure by generating High Dynamic Range (HDR) Images.
The HDR image is generated by integration of multiple ex-
posure images that are taken with different exposure settings.
When taking multiple exposure images for the scene that con-
tains dark areas, one often copes it by adjusting one of the
three settings: (1) camera’s sensitivity, (2) exposure time, (3)
lens’ aperture, in order to compensate shortage of the quan-
tity of light. Each of the three methods have a drawback. The
high camera sensitivity enhances noises as well as signals.
The long exposure causes motion blur. The lens with wide
aperture yields out-of-focus images. The first two problems
can be solved by denoising and deblurring, respectively, and
there are many methods for solving the problems. Our aim
is to address the third problem. We generate an all in-focus
image without the under/over-exposure and out-of-focus ar-
eas due to the wide aperture by integrating the multiple ex-
posure images. We introduce a new technique for image in-
tegration which simultaneously addresses the problems of the
under/over-exposure and defocus. The validity of the pro-
posal technique is shown by comparing it with several con-
ventional methods for real scenes.

Index Terms— Multiple Exposure Images, All In-focus
Image, Image Restoration

1. INTRODUCTION

The Human Visual System (HVS) can acquire a large dy-
namic range of light in a natural scene. The dynamic ranges
of many commercial camera devices are narrower, and thus
pixel saturation (i.e. under/over-exposure) often occurs in an
image. Many methods have been proposed to integrate mul-
tiple exposure images to enhance the dynamic range of an
image without the under/over-exposure [1], [2], [3], [4], [5].
In [1], [2], a design method for the ICRC (Inverse Camera
Response Curve) that cancels the effect of a nonlinear camera
response called CRC (Camera Response Curve) is proposed.
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After linearizing the camera response effects in multiple ex-
posure images, the high dynamic range (HDR) image is ob-
tained by the weighted sum of the images, which restores a
natural scene with few under/over-exposures areas. The in-
tensity of the HDR image is transformed to a low dynamic
range image by so called tone mapping when displaying it
in devices with limited dynamic ranges [6], [7], [8]. Some
methods such as [3] and [9] skip the HDR generation step
and directly create the low dynamic range image without the
under/over-exposure. The procedure is called exposure fu-
sion. In [3], contrast enhancement is realized by integrating
multiple exposure images in the multiresolution pyramid with
Gaussian weights calculated based on the color saturation, ex-
posure, and contrast of the images. One of desirable features
in the exposure fusion is that it can generate an integrated im-
age with high contrast, but it can skip the procedure of cam-
era response curve linearization, the information on exposure
time, and tone mapping for displaying on devices with lim-
ited range. However the method does not handle images with
out-of-focus areas.

We propose a new integration method for multiple expo-
sure images which realizes simultaneous restoration of the
under/over-exposure and out-of-focus areas. In the proposed
method we generate two images by a weighted image inte-
gration technique. The two images are generated with the
weights based on the color saturation/exposure and contrast.
The two images are further combined by an optimization
based image integration to obtain a final image that is free
from under/over-exposure and out-of-focus artifacts.

In the paper, first we explain conventional work related to
our method, and then propose a new integration algorithm to
realize the restoration for the under/over-exposure and our-of-
focus artifacts in Section 3. In Section 4, we show the validity
of our algorithm by some experimental results, and then we
conclude the work in Section5.

2. CONVENTIONAL METHOD

The exposure fusion in [3] utilizes the following three weights
derived from the color saturation, exposure, and contrast of
the input image to perform the weighted image integration.



Fig. 1. Example of input multiple exposure images with dif-
ferent focal lengths.

Color saturation: ws =

√
(IR − µ)2 + (IG − µ)2 + (IB − µ)2

3
,

(1)

where Ir, Ig and Ib are the RGB channels of an image I ,
respectively. µ is its mean value over the three channels.

Exposure: we = exp(− (I − 0.5)2

2σ2
), (2)

where σ is a parameter for the standard deviation of the
Gaussian-like function.

Contrast: wc = |hl ∗ Iy|, (3)

where hl is a Laplacian filter and , Iy is the intensity of the
image, and ∗ indicates a convolution.

In [3], they use multiresolution integration with Gaussian
and Laplacian pyramids for the image fusion. Letting the t-th
layer of an image u∈RN (where N is the number of pixels)
in the Gaussian and Laplacian pyramids be gt(u)∈RN/4t

and
lt(u)∈RN/4t

, respectively, then the fusion in the t-th layer is
given by

lt(r) =
K∑

k=1

gt(w
(k)
f ) ⊗ lt(u(k)), (4)

where (k) indicates the k-th exposure, and w(k)
f ∈ RN is a

weight map calculated with a k-th exposure image. gt(w
(k)
f )

is the t-th layer in Gaussian pyramid of the k-th weight map,
and lt(u(k)) is t-th layer in Laplacian pyramid of the k-th
weight map. The operator ⊗ is a pixel-wise multiplication.
The image integration using the pyramid is performed by the
weighted mean (4) for each layer, followed by pyramid syn-
thesis for lt(r) to obtain a composed result.

3. PROPOSED METHOD

In our method, the multiple exposure images are taken with
wide aperture (i.e. low f-stop). The use of the wide aperture
can take a larger amount of light and relieve motion blur, but
it causes out-of-focus regions. Our main aim is to combine
multiple exposure images which are taken with different focal
lengths (see Fig.1) and to simultaneously restore a single all
in-focus image with a high dynamic range.

To construct our algorithm we assume that a multiple ex-
posure image set shares a rough structure with sharp edges,
while the presence of detailed texture depends on exposure
level, i.e. the texture in highlights only appears in a high
exposure image. Many of the tone mapping methods treat

Fig. 2. Proposed exposure fusion

the structure and texture components separately for flexible
handling of edges. Our method also starts with the struc-
ture/texture decomposition. We use Karacan et al.’s method
[10] for the decomposition. The structure and texture compo-
nents of the input images are further processed by the method
described in the Sec.3.2 and 3.3, respectively. The procedure
is illustrated in Fig.2.

3.1. Image Integration

We combine the structure components of the multiple expo-
sure images before obtaining a final image by optimization.
When input images have out-of-focus area, one should as-
sign low weights for the area. The conventional method [3]
sometimes yields blurring artifacts and regions with low con-
trast, since the weights are obtained by a simple multiplica-
tion of several images. In our method, we take a different
approach to address the problem. First we generate two im-
ages yws,e

∈ RN and ywc
∈ RN by combining the structure

components of the multiple exposure images using (4). One
image yws,e

is obtained by the weights ws,e = ws × we in-
troduced in [3], which is calculated from the color saturation
and exposure. The other image ywc is obtained by the weight
derived from the contrast. In our method, we slightly modify
the procedure to calculate wc in (3), that is, we further apply
Gaussian filter to the output hl ∗ iy in (3), and then we adopt
its absolute value as the weight wc , since simply applying
Laplacian filter sometimes yields ghost due to the ringing ar-
tifacts caused by Laplacian filter in our case.



Fig. 3. The detail of structure component fusion.

3.2. Structure Image Integration with Optimization

Using the two images, yws,e
and ywc

, we generate a final im-
age by the optimization based integration. The image yws,e

calculated with the weights of the color saturation and expo-
sure has few under/over-exposed areas, while the other image
ywc has clear contrast over the whole image. A next step is to
utilize the features of the two images and integrate them to a
final image. The procedure of this step is shown in Fig.3.

The integration problem in our method is stated as the
minimization of the following cost function

min
s

‖yws,e − s‖2
2 + λ‖L(ywc − s)‖2

2, (5)

where L ∈ RN×N is a convolution matrix for the Laplacian
filter, and λ∈R is a parameter to balance the two terms. The
cost function is designed based on the concept that the latent
image roughly resembles yws,e, while the detailed contrast is
similar to ywc . The first term is a fidelity function over the
image yws,e combined by the weights of the color saturation
and exposure. The second term is introduced to approximate
the image ywc in the gradient domain.

As Eq.(5) is a quadratic form w.r.t. s, the solution is sim-
ply obtained by solving the normal equation:

s =
(
I + λLT L

)−1 (
yws,e + λLT Lywc

)
, (6)

where I∈RN×N is an identity matrix. Note that as the ma-
trix to solve is a block circulant matrix with circulant blocks
(BCCB), it is diagonalized by FFT, and thus the solution can
be quickly calculated.

3.3. Texture Image Integration

The texture components are combined by taking the maxi-
mum value for each pixel. If the max values are taken in
RGB channels independently, the color balance of the image
is often damaged. Thus we perform the following procedure

instead. First, we find the exposure image that has the maxi-
mum value of the l2 norm of the RGB channels for each pixel,

k∗
i = arg max

k

√
(t(k)

Ri )2 + (t(k)
Gi )2 + (t(k)

Bi )2, (7)

where t
(k)
Ri , t

(k)
Gi , t

(k)
Bi are the RGB components of i-th pixel of

the texture components derived from the k-th exposure. Then
all the three RGB values of k∗

i -th exposure image is stored at
i-th pixel of the resultant texture image t. This procedure is
applied to all the pixels. Since the texture components have
large energy around the in-focus area, one can obtain the tex-
ture with high contrast by taking the maximum values

Using the integrated structure component s in (6) and tex-
ture component t, the final result is obtained by

y = s + t. (8)

4. EXPERIMENTAL RESULTS

We prepare several multiple exposure image sets for different
scenes. We took the images by varying exposure time and fo-
cal length with other settings fixed. We integrate three expo-
sure images and compare it with some conventional methods.
Fig.4 shows the results of the three conventional methods: EF
[3], DPEF[9], IFGF[11], and ours. In the results of DPEF and
IFGF of Fig.4(a), halo artifacts appear around sharp edges,
resulting in unnatural appearance (we indicate it by the blue
circles in Fig.4(a)), while both of EF and our method preserve
natural appearance without the halo artifacts. In 4(b), EF and
DPEF do not restore high frequency components, and the out-
of-focus artifact still remains, especially in the area with high
contrast. The areas with low contrast are indicated by the red
circles in Fig.4(b). On the contrary, IFGF and our method
restores sharp edges in the whole images.

After all, the comparison can be summarized as follows.
The methods EF and DPEF often fail in restoring contrasts es-
pecially in the out-of-focus areas. IFGF mostly restores high
contrast in whole images, but it also yields severe halo arti-
facts. In contrast, our method successfully realizes the simul-
taneous restoration for under/over-exposure and out-of-focus
areas without the halo artifacts and yields more natural im-
ages.

For quantitative comparison, we adopt Mean Absolute
Laplacian (MAL), which is the mean absolute values of the
Laplacian output, as a measure to evaluate the contrast. Table
1 shows the results, in which higher values indicate higher
contrast. One can see from the table that our method outper-
forms the other methods in the scores.

5. CONCLUSION

We propose a method to simultaneously restore under/over-
exposure and out-of-focus areas by integrating multiple ex-
posure images. Our method can generate all in-focus im-



Table 1. Comparison of Mean Absolute Laplacian
scene1 scene2 scene3 scene4

EF [3] 0.0258 0.0115 0.0502 0.0325
DPEF [9] 0.0244 0.0126 0.0527 0.0330
IFGF [11] 0.0314 0.0123 0.0545 0.0371

Our method 0.0348 0.0137 0.0579 0.0385

ages without any under/over-exposure. From the experimen-
tal comparison, we show the superiority of our method.



(a) Fused results of multiple exposure images

(b) Close up of fused results

Fig. 4. Fused results of multiple exposure images - (from top to bottom) scene1, scene2, scene3, and scene4: (from left to right)
EF [3], DPEF [9], IFGF [11], and Our method.
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