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Abstract The color-line feature defined as a line rep-
resenting the shape of color distribution in a local region
is often used in image processing. To demonstrate the
practicability of the color-line concept for multispectral
images, a new denoising method is proposed by the use
of the color-line vector field and local color component
decomposition, based on the extension of the RGB color
line feature to M -band multispectral image. In contrast
with most of conventional denoising methods which do
not consider the correlation among the neighboring pixel
colors, our method efficiently avoids discolorations by its
color correlation consideration. The algorithm consists
of color decomposition and filtering, iteratively. In the
case of the multispectral images, the number of bands
to process influences the calculation of the decomposed
components. In this regard, our algorithm provides flex-
ibility to set the number of processed band. The effec-
tiveness of our method is validated by comparing the
results to VBM3D and nonlocal means. Quantitative
comparison shows that our proposed method produces
superior results, and has closer similarity to the original
image visually.

1 Introduction

Many denoising methods apply a procedure to RGB
channels independently, which violates color balance and
results in discoloration artifacts. To avoid this draw-
back, the color correlation should be considered and it
can be approximated by the use of a color-line (cl) fea-
ture as an elongated cluster in the RGB color spaces
that represents the shape of color distribution in a local
region.
Some works introduce the application of cl feature.

In [1], the cl features are used as a model to produce
a new color representation. The work does not con-
sider any particular color distortion, but precisely dis-
tinguishes one color from another by its cl feature. From
this idea, they provide the use of cl model for some ap-
plications, i.e. segmentation, compression, color editing
and saturated color correction in [1]. Whereas, Fattal
et al. [2] exploit the cl pixel regularity of a single im-
age to introduce a new dehazing method. They derive a
local formation model reasoning the cl features in hazy
scenes and describe how it is used for estimating the
scene transmission.
Our previous work [3] introduced a novel smoothing

and denoising algorithm based on the cl vector field pro-

duced from local color component decomposition step.
The method successfully avoids discolorations that ap-
pear in the result of the compared method. Noise reduc-
tion based on cl is also introduced in [4]. They elabo-
rate conventional filters such as the bilateral filter and
nonlocal means, with the cl model to improve their per-
formance. This research can significantly boost the con-
ventional noise reduction capability.

Different from these applications that work on the
RGB color image domain, in this paper, we extend
the cl feature for RGB color image denoising to per-
form another color line application that is a new denois-
ing method for multispectral satellite images. Denosing
for multispectral image becomes a challenging problem
due to the fact that it consists of more channel than
RGB color image. By using the cl feature, our pro-
posed denoising method considers the intensity corre-
lation among neighboring pixels and among the bands.
Hence, the denoising is conducted without ignoring the
spectral information.

2 Algorithm

Our previous work [3] successfully introduced cl fea-
ture application for smoothing and denoising the RGB
color image. In this paper, we improve the idea of cl
feature to M bands image denoising and promote cl ap-
plication for remote sensing area. In multispectral im-
age case, we consider the intensity distribution of the
M -band in local region. Basically, the proposed method
works by iteratively filtering an image along the color
line of its local color distribution.

The algorithm is illustrated in Figure 1. In detail, it
consists of the following five steps:

1. Calculate the local color distribution of each pixel
with their neighboring pixels as the color line vec-
tor fields (described in Subsec. 2.1).

2. Align the direction of each vector by changing the
sign so that the neighboring vector directions be-
come smooth (Subsec. 2.2).

3. Decompose each pixel into the mean color compo-
nent, color line component, and residual compo-
nent (Subsec. 2.3).

4. Do nothing to the mean color component and
smoothing the color line component, and denoising
the residual component (Subsec. 2.4).



Figure 1: Flowchart of the proposed algorithm with four
main steps conducted iteratively.

5. Reconstruct the image from its components. Turn
back to step 1 (Subsec. 2.5).

2.1 Color Line Vector Field Calculation

We derive the cl vector as the eigenvector that corre-
sponds to the maximum eigenvalue by using PCA. The
more detailed procedure is given as follows:

1. Calculate the mean color component of each pixel
i for each band,

µi =
1
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2. Calculate the covariance of each pixel,

Ci =
( 1

w

∑
j∈N (i)

I⊤j Ij

)
− µ⊤

i µi, (2)

that result in Ci ∈ RM×M .

3. To obtain the color line vector, find the maximum
eigenvalue di of every pixel covarianceCi, and sub-
sequently derive its corresponding eigenvector as
the cl vector v.

2.2 Alignment of Color Vector Orientation

The resulting eigenvector vi may have sign si in an
ambiguity (si = +1 or −1), forming sivi. For the vector
direction alignment, the sign si of a pixel i should be set
to fit the dominant direction of neighboring vectors by
using the inner product as the criterion. However, this
step is only effective for pixel-wise flip. As for a large
region of sign flip, a multiresolution approach is required.

Firstly, to determine the sign of each vector vi that
minimizes the energy function among neighboring pixel
pairs {i, j} :

∑
{i,j} ∥sivi − sjvj∥2, we adopt the follow-

ing Jacobian relaxation method [5]:

s(t+1)
p = sign

( ∑
q∈N (p), q ̸=p

(s(t)p vp)
⊤(s(t)q vq)

)
, (3)

where the sign sp of a pixel p is aligned with the dom-
inant sign of 3 × 3 neighboring vectors in q ∈ N (p),
considering the inner product.

Then, the step is followed by multigrid’s V-cycle [5]
as the multiresolution approach that is depicted in Fig-
ure 2. The multiresolution pyramid for vector and sign
images is generated using Gaussian pyramid decomposi-
tion [6]. Additionally, in the decimation process, for the
sake of giving the priority to pixels around edges which
have large eigenvalues, we multiply the eigenvalue di as
the weight for the pixel: disivi, then apply the decima-
tion filter and renormalize the half-sized vector field. As
for the multiresolution eigenvalue images, they are gen-
erated by the same approach of the Gaussian pyramid.

2.3 Color Decomposition

The next step is the local color decomposition of each
pixel color Ii into the cl component Di (detail compo-
nent) along the cl vector vi, and the

dual component Ni (noise component) perpendicular
to it. This process is depicted in Figure 3. We begin with
calculating the difference vector ∆Ii = Ii−µi to get the
cl component as the inner product of the normalized cl
vector,

Di = v⊤
i ∆Ii. (4)

Then, we obtained the residual vector as,

ri = ∆Ii −Divi. (5)

Finally, the residual component is derived from ℓ2 norm
of the residual vector,

Ni = ∥ri∥. (6)

2.4 Filtering

The cl components Di obtained in the previous step
still contain noise. Consequently, denoising of the cl
components is required in the spatial domain. We iter-
atively refine the cl component which is in grayscale by
denoising with the anisotropic diffusion [7]. We repeat



Figure 2: Multiresolutional relaxation method for vector
direction algnment.

Figure 3: Color decomposition of one pixel.

the procedure until the desired criteria is met, resulting
in the filtered cl component Di. This conventional it-
erative filter is adopted instead of non-iterative filters
such as conventional lowpass filters or median filters,
since they perform too strong capability in smoothing.
In other words, the anisotropic diffusion is more appro-
priate in our framework.
Meanwhile, the residual component Ni as the noise

component is filtered using Geman McClure robust func-
tion [8] to reduce small intensity noise. Ultimately, the
filtering step is followed by smoothing using Wiener filter
giving the filtered residual component N i.

2.5 Reconstruction

The final step is color component recomposition to
result in a smoothed and denoised image. The residual
vector is normalized beforehand.

Ii = µi +Divi +N iri. (7)

3 Experiment

The practicability of color line concept for multispec-
tral image is examined by applying the proposed algo-
rithm. To validate the effectiveness of our method, the
results are compared to other powerful denoising meth-
ods, i.e. video block matching 3-D filtering (VBM3D) [9]

and band-by-band nonlocal means (NLM) [10]. In the
experiment, the parameters of our method and the com-
petitor methods are set so as to give the best evaluation
values.

Four real multispectral data are used in this experi-
ment, i.e. the cropped area of Kyushu Island in Japan,
Yellow River area in China, Papua Island in Indonesia
and Washington in USA. They are collected by Opera-
tional Land Imager (OLI), and instrument onboard the
Landsat 8 satellite. The multispectral band consists of
band 1 − 7, dedicated for coastal aerosol, red, green,
blue, NIR, SWIR 1 and SWIR 2 channel respectively,
with wavelength range 0.43 − 2.29µm. Regarding this,
the parameter M as the number of processed bands is
set to 7. We contaminate the data by Gaussian noise
with standard deviation of 0.06.resulting SNR of 24.44.

For the result evaluation, two quantitative parame-
ter are taken, i.e. Peak Signal-to-Noise Ratio (PSNR)
and Feature SIMilarity (FSIM). PSNR is popular as a
ratio between the original image and the distorted im-
age, where the higher the PSNR, the more similar the
distorted image is to the original. As for FSIM, it ex-
ploits phase congruency and gradient magnitude as im-
age low-level features that human visual system mainly
recognizes from an image [11].

To calculate the color orientation, we use half of the
window size which is set to 4. For the sake of the ex-
pected result, the number of main iterations is set to
3. The cl and residual component produced from the
color decomposition step are shown in the top left and
top right of Figure 4, respectively. Then, the cl com-
ponent is processed to the smoothing phase using the
anisotropic diffusion with 10 times iteration. Whereas,
the residual component is denoised by our noise reduc-
tion filter. The image of each component after finishing
the main iteration is illustrated in the bottom left and
bottom right of Figure 4. The final images after the
reconstruction are shown in Figure 5 and 6.

The experiment results are given in Table 1. Our
method improves the image quality with PSNR reaching
10 dB increase than the noisy image. From the table,
we can conclude that for all data, our method success-
fully achieves higher PSNR than the nonlocal means
method and slightly competes the result of VBM3D.
However, the significant superiority of ours compared
with VBM3D can be distinguished from visual appear-
ance depicted in Figure 5 and 6. These images illus-
trate, (a) original image, (b) noisy image with additional
Gaussian noise, (c) result of nonlocal means method, (d)
result of VBM3D, and (e) our iterative method with 3
iterations. One can see from these images that VBM3D
results in too smooth images compared to the original,
whereas our resulting images are closer to the original.
Moreover, FSIM computation which correlates to the
high informative features [11] yields higher value in ours
than others.



(a)Cl component (b) Residual component

(c) Smoothed cl (d) Denoised residual
component component

Figure 4: Smoothing and denoising result of the decom-
posed components

4 Summary

In this paper, we have demonstrated that the color-
line vector field along with the local color decomposi-
tion can be applied for multispectral image denoising
corrupted by additive Gaussian noise. The basic idea of
our method is exploiting the intensity correlation among
bands and neighboring pixels to achieve the smoothed
and denoised image. Our experiment show that the
proposed method can compete with other powerful de-
noising methods, VBM3D and nonlocal means in both
quantitative measurement and visual appearance com-
parison.
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(a) Original (PSNR/MFSIM) (b) Noisy (24.44/0.94) (c) Nonlocal means (32.57/0.96)

(d) VBM3D (34.31/0.97) (e) Ours (34.48/0.98)

Figure 5: Comparison among images from the experiment of China data band 5, with resolution of 30 m

(a) Original (PSNR/MFSIM) (b) Noisy (24.44/0.93) (c) Nonlocal means (31.77/0.94)

(d) VBM3D (33.85/0.93) (e) Ours (34.16/0.96)

Figure 6: Comparison among images from the experiment of Papua data band 6, with resolution of 30 m.


