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ABSTRACT

In this paper, we present a numeri
al algorithm for the de-

sign of FIR �lters with sparse impulse responses. Our method

minimizes the number of nonzero entries in the impulse re-

sponse together with the least squares error of its frequen
y

response. We show that the FIR �lters with sparse 
oef�-


ients 
an outperform a 
onventional least squares approa
h

and the Parks-M
Cllelan method under the 
ondition of the

same number of multipliers.

Index Terms� FIR �lter design, 
oef�
ient sparsity, l

0

approximation,

1. INTRODUCTION

The design of FIR �lters is an important issue in digital sig-

nal pro
essing. Many design methods have been proposed

by a number of authors [1℄-[12℄. Espe
ially the least-squares

(LS) method, whi
h minimizes the mean squared error of fre-

quen
y responses, is widely used due to its simpli
ity and

�exibility [7℄-[12℄.

Most of 
onventional �lter design approa
hes aim to min-

imize a �lter order and maximize the �lter performan
e. Even

though the FIR �lter 
oef�
ients designed by the LS method

is optimal in the least squares sense, it is not ne
essarily opti-

mal among the set of �lters with the same number of multipli-

ers, that is, less mean squared error 
an be a
hieved by a �lter

that has the same number of multipliers, but has longer im-

pulse response with some zero-valued entries. To minimize

the number of multipliers instead of the �lter order, some

approa
hes design the �lter with zero-valued taps, whi
h is

often 
alled sparse �lters [13℄-[14℄ (Fig.1). In [14℄, an ef�-


ient design method is proposed. However the method needs

to design �lters iteratively, and high 
omputational effort is

required for high order �lters.

In this paper, we present a numeri
al approa
h for design-

ing the sparse �lters. Our method 
onsists of two steps. In the

�rst step, we �nd the position of zero-valued 
oef�
ients us-

ing the l

2

-l

0

optimization, and then in the se
ond step the �lter


oef�
ients are determined while keeping the 
oef�
ients de-

termined by the �rst step �xed to zero. Our method does not

�
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Fig. 1. Impulse response of sparse �lters: 'x' indi
ates zero


oef�
ients.

guarantee optimality in the sense of sparsity, but has better

performan
e than the 
onventional �lter design methods.

In Se
tion 2, the basi
 theory of the least squares method

for the FIR �lters is brie�y des
ribed. In Se
tion 3, our design

problem is formulated and a design algorithm that 
onsiders

the sparsity of 
oef�
ients is proposed. In Se
tion 4, several

examples are illustrated to verify the validity of the proposed

algorithm, and a 
omparison with the 
onventional methods

are shown. In the last se
tion, we make 
omments on the

advantages of the algorithm.

2. CONVENTIONAL WEIGHTED LEAST-SQUARES

METHOD

The magnitude responseH(!) of the linear phase FIR �lters

and more general non-linear phase FIR �lters 
an be written

as a linear 
ombination of trigonometri
 basis fun
tions

H(!) =

N�1

X

n=0

a

n

�

n

(!); (1)

where, for example, �

n

(!) = 
os(n!) for even-order sym-

metri
 linear phase �lters, and �

n

(!) = e

jn!

for more gen-

eral formula.

Our design method 
an handle all types of the FIR �lters

expressed by (1), however due to the limited spa
e, we show

only the 
ase of the even-oder symmetri
 linear phase FIR

�lters.

We here repeatH(!) for the even-order symmetri
 �lter:

H(!) =

N�1

X

n=0

a

n


os(n!); (2)



whereN = (N

0

� 1)=2 + 1 andN

0

is its �lter length.

Here we brie�y review the 
onventional weighted LS

(WLS) method. Generally, the mean squared error of Eq.(2)

over the interval [0; �℄ is de�ned as

�

1

=

1

�

Z

�

0

W (!)jH(!)�D(!)j

2

d!; (3)

whereW (!) is a weight fun
tion whi
h is not identi
ally zero

and has positive values, and D(!) is a desired frequen
y re-

sponse. The optimal �lter 
oef�
ients fa

n

g

N�1

n=0

in the LS

sense 
an be uniquely determined by solving the normal equa-

tion:

Qa = p; (4)

where

a = [a

0

a

1

� � �a

N�1

℄

T

p

m

=

1

�

Z

�

0

W (!)D(!) 
os(m!)d! (5)

Q

m;n

=

1

�

Z

�

0

W (!) 
os(m!) 
os(n!)d!; (6)

where p

m

and Q

m;n

are m-th and (m;n)-th elements of p

andQ, respe
tively.

WhenD(!) andW (!) are simple fun
tions, Eqs. (5) and

(6) 
an be easily 
al
ulated in a 
losed form. However, 
om-

monly, the integrals of Eqs.(5) and (6) are dif�
ult to derive

if bothD(!) andW (!) are arbitrary. In parti
ular, when the

weight fun
tion is given by an error response, as in Lawson's

algorithm (dis
ussed later), we 
an never 
al
ulate the inte-

gral in Eqs.(5) and (6). Therefore, in pra
ti
e, it is ef�
ient to

de�ne the following 
ost fun
tion whi
h is expressed as the

�nite sum of the errors on the dis
retized frequen
y points.

�

2

=

1

L

L�1

X

l=0

W (!

l

)jH(!

l

)�D(!

l

)j

2

(7)

We denote it by using the l

2

norm of the error

�

1=2

2

= kW (Ra� d)k

2

; (8)

where the (l; k)-th elements ofR is

R

l;k

= 
os(k!

l

) (9)

and

d = [D(!

0

) D(!

2

) � � � D(!

L�1

)℄

T

(10)

W = diagfW (!

0

) W (!

2

) � � � W (!

L�1

)g (11)

In this 
ase, p

m

andQ

m;n

of Eqs.(5) and (6) in the normal

equation are rewritten as follows.

p

m

=

1

L

L�1

X

l=0

W (!

l

)D(!

l

) 
os(m!

l

) (12)

Q

m;n

=

1

L

L�1

X

l=0

W (!

l

) 
os(m!

l

) 
os(n!

l

) (13)

3. DESIGN ALGORITHM

The 
onventionalWLS method is optimal in the LS sense un-

der the 
ondition that the �lter length is �xed. If one allows a

longer �lter length with some zero 
oef�
ients, it 
an a
hieve

better approximation than the non-sparse �lters with the same

number of multipliers. Our goal is to design su
h sparse �l-

ters. The proposed design algorithm 
onsists of two steps as

shown below:

1. The positions of �lter 
oef�
ients to be zero is deter-

mined. We a

omplish it to solve the sparse approxi-

mation problem (dis
ussed in Se
.3.1).

2. The zero-valued 
oef�
ients in the previous step are

�xed to zero and the �lter 
oef�
ients are found by us-

ing a 
onventional least squares design (Se
.3.3).

3.1. Sparse Approximation

Here we de�ne kak

0

as the number of non-zero elements in

a (It is often 
alled zero-norm or l

0

-norm, despite not satis-

fying the properties of the norm). Our aim is to approximate

the desired frequen
y response by the linear phase FIR �lter

with minimum number of 
oef�
ients. To ful�ll it, we de�ne

the �lter design problem as a pro
ess to minimize the 
ost

fun
tion:

min

a

1

2

kW (Ra� d)k

2

2

+ �kak

0

; (14)

where d is a desired frequen
y response and the parameter

� is introdu
ed to 
ontrol the balan
e between the error of

the �lter and the number of the 
oef�
ients. Sin
e the se
ond

term of the 
ost fun
tion (14) is a dis
rete metri
, the problem

is inherently dif�
ult to solve by 
onventional methods su
h

as gradient de
ent based optimization.

We adopt a method based on the variable splitting and

quadrati
 penalty, whi
h is re
ently applied to image restora-

tion problems [15℄, [16℄, [17℄. Introdu
ing an auxiliary pa-

rameter s that 
orresponds the 
oef�
ients a, the problem

(14) is equivalent to the following minimization problem:

min

a;s

1

2

kW (Ra� d)k

2

2

+ �ksk

0

;

subje
t to ka� sk

2

2

= 0 (15)

Instead of solving (15), we add the penalty term ka�sk

2

2

to the 
ost. In the end, our design problem is stated as

min

a;s

1

2

kW (Ra� d)k

2

2

+ �ksk

0

+




2

ka� sk

2

2

; (16)

where 
 is a weighting parameter that 
ontrols similarity be-

tween a and s. The strategy of the variable splitting approa
h

is that, we start with initial values of s

0

, and then repeatedly

solve two sub-problems:



1.

a

k

= argmin

a

1

2

kW (Ra� d)k

2

2

+




2

ka� s

k�1

k

2

2

(17)

2.

s

k

= argmin

s

�ksk

0

+




2

ka

k

� sk

2

2

(18)

3. 


k+1

= � � 


k

; (� > 1)

4. k = k + 1;

The �rst sub-problem (17) has a simple quadrati
 form. The

solution is determined by solving

(R

T

W

2

R+ 


k

I)a

k

= R

T

W

2

d+ 


k

s

k�1

(19)

The optimal solution of the se
ond sub-problem (18) is

found for ea
h 
oef�
ient individually, that is, the problem

is equivalent to the minimization of the fun
tion E(s

n

) for

n = 0; 1; � � � ; N � 1 as follows

min

s

n

E(s

n

) = �C(s

n

) +




2

(a

n

� s

n

)

2

;

(n = 0; 1; � � � ; N � 1) (20)

where s

n

is an element in s, and the fun
tion C(s

n

) has 1 if

s

n

6= 0 and 0 otherwise (we omit the supers
ript k). In the

end, (18) is minimized when

s

�

n

=

�

0; a

2

n

< 2�=


a

n

; otherwise

(21)

(for derivation, see Appendix)

3.2. Balan
e 
ontrol

In the algorithm, the desired number of non-zero 
oef�
ients

(denoted by N

d

) is spe
i�ed by a user. The parameter � in

theminimization problem (16) determines the number of non-

zero 
oef�
ients. However it is dif�
ult to expli
itly formu-

late the relationship with � and N

d

. We adopt a heuristi


approa
h, in whi
h � adaptively 
hanges in the iterations a
-


ording to the number of non-zero 
oef�
ients. If the a
tual

number of non-zero 
oef�
ients in an iteration is larger than

N

d

, � is in
reased to r

u

�� (r

u

> 1), otherwise � is de
reased

to r

l

�� (r

l

< 1), where r

u

, and r

l

are newly introdu
ed s
al-

ing parameters. When the number of the 
oef�
ients rea
hes

N

d

, then � is �xed. The algorithm starts with large values of

r

u

and r

l

, then those are gradually de
reased.

3.3. Constrained Filter Design

The aim of the algorithm in Se
.3.1 is to �nd the positions

for the �lter 
oef�
ients to be zero. On
e the positions are

determined, we re-design the �lter by the 
onstrained least

squares approa
h to a
hieve an optimal �lter:

a

�

= argmin

a

�

2

s:t: a

n

= 0 (8n 2 S);

where S is the set of the positions of zero 
oef�
ients. The

solution for the problem is given by solving the normal equa-

tion.

4. EXAMPLES AND COMPARISON

In this se
tion, several numeri
al examples are shown to ver-

ify the advantage of the proposed algorithm. All examples

were designed in MATLAB. All frequen
ies are normalized

by � and frequen
y points are equally spa
ed.

Example 1: Least Squares Filter

A low-pass �lter with a narrow transition band was designed.

The �lter length N

0

is 1059 (N = 530) and the number of

non-zero 
oef�
ients is N

d

= 859. The passband and stop-

band edges !

p

= 0:05 and !

s

= 0:055. The result is 
om-

pared to two 
onventional least squares approa
hes:

1. (LS1) Design a �lter of length N

d

by the 
onventional

LS method.

2. (LS2) Design a �lter of length N

0

by the 
onventional

LS method and then for
e the N

0

�N

d

smallest 
oef-

�
ients zero.

Fig.2 illustrates the log-magnitude response of �lters de-

signed the (a) LS1 and (b) the proposed method. The mean

squared errors of LS1, LS2 and the proposed method were

4:48 � 10

�3

, 4:34 � 10

�3

, 3:08 � 10

�3

, respe
tively.

We tested hundreds of design examples, and all examples


onverge to �lters with smaller errors than ones of the 
onven-

tional LS methods (LS1 and LS2). Some of them are listed in

Table 1.

Table 1. Squared error(!

p

: passband edge, !

s

: stopband

edge,N : �lter length,N

d

: # of non-zero 
oeffs., all the three

�lters listed have same number of non-zero 
oef�
ients)

(!

p

; !

s

; N

0

; N

0

�N

d

), LS1 LS2 Proposed method

(0.2, 0.26, 99, 40) 2.00e-2 3.42e-2 1.24e-2

(0.1, 0.14, 199, 40) 2.23e-4 7.13e-4 1.46e-4

(0.1, 0.14, 199, 80) 3.60e-3 1.35e-2 2.00e-3

(0.1, 0.11, 459, 100) 1.47e-2 1.24e-2 9.69e-3

(0.03, 0.035, 1199, 400) 7.38e-3 1.16e-2 4.81e-3

(0.05, 0.052, 2059, 1000) 0.183 0.142 0.111

Example 2: Chebyshev approximation

In this example, we apply the proposed method to the Cheby-

shev approximation, and 
ompare it with the Parks-M
Clellan

(PM) algorithm [3℄.



In the algorithmmodi�ed Lawson's algorithm [12℄ is used

for the Chebyshev approximation, in whi
h the WLS prob-

lems are solved iteratively. In ea
h iteration the weighting

fun
tion is updated by

W

k+1

(!

l

) = W

k

(!

l

)

W

0

(!

l

)E

env

k

(!

l

)

P

i

W

0

(!

l

)E

env

k

(!

l

)

; (22)

where E

env

k

(!) is the pie
ewise-linear envelope fun
tion of

the error (for detail, see [12℄).

The algorithm for the Chebyshev approximation is stated

as follows.

1. The initial weight W

0

(!) is given and start with

W

1

(!) =W

0

(!).

2. Solve the sparse approximation in Se
.3.1.

3. The weight is updated by (22).

4. If it 
onverges, then go to Step 5, otherwise go ba
k to

Step 2.

5. Fix the zero-valued 
oef�
ients, the 
onventional Law-

son's algorithm [12℄ is performed to re-design the �lter.

We design the �lter, whose passband and stopband edges

are !

p

= 0:1 and !

s

= 0:13, respe
tively.

We 
ompare our results with the PM method that guaran-

tees its optimality for the non-sparse �lters

1

. We adjust the

initial weighting fun
tionW

0

(!) to obtain the same amount

of passband ripples, and then 
ompare the stopband ripple

with the PM method. Fig.3 shows the results of the designed

�lter with N = 259 and N

d

= 139. Table 2 gives some of

numeri
al design examples. Our method outperformes PM

method by 2-8 dB in the attenuation. A

ording to the paper

[14℄, the sparse �lter [14℄ also in
rease the level of attenua-

tion by 2-8 dB over the PMmethod. However themethod [14℄

needs iterative design of the optimal �lter, and if the length is

in
reased, the number of iteration will be
ome mu
h larger.

On the other hand, in our algorithm the design of 300-tap

equiripple �lter needs only a few se
onds to 
onverge with

Intel Core i7 2.93GHz CPU.

Appendix

This step is equivalent to hard thresholding in the shrinkage

algorithm. When s

n

6= 0, we have

E(s

n

) = � +




2

(a

n

� s

n

)

2

and then E(s

n

) has the minimum value

E(a

n

) = �

1

exe
uted in MATLAB using '�rpm.m'

Table 2. Chebyshev Approximation (!

p

= 0:1, !

s

= 0:13,

N : �lter length, N

d

: # of non-zero 
oeffs., the length of

the PM �lter is N

d

, p.r.: maximum passband ripple[dB℄, s.a.:

minimum stopband attenuation[dB℄)

PM method Proposed Method

(N;N

d

) p.r. s.a. p.r. s.a.

(159, 79) 3.12e-2 25.2 3.12e-2 30.1

(199, 99) 1.60e-2 27.9 1.60e-2 35.9

(239, 119) 8.75e-3 33.1 8.75e-3 41.2

(259, 139) 5.53e-3 37.6 5.53e-3 45.1

(319, 179) 2.33e-3 48.9 2.33e-3 52.6
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Fig. 2. Example 1 (a) Conventional LS method, (b) Sparse

Filter

at s

n

= a

n

. In the 
ase of s

n

= 0,

E(0) =




2

a

2

n

holds.

Thus if

� >




2

a

2

n

is satis�ed, E(s

n

) has the minimum value




2

a

2

at s

n

= 0.

Otherwise E(s

n

) has minimum value � at s

n

= a

n

. In the

end, (21) holds.

(a) (b)

Fig. 3. Example 2 (a) PM method, (b) Sparse Filter
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