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ABSTRACT

In this paper, we present a numerial algorithm for the de-

sign of FIR �lters with sparse impulse responses. Our method

minimizes the number of nonzero entries in the impulse re-

sponse together with the least squares error of its frequeny

response. We show that the FIR �lters with sparse oef�-

ients an outperform a onventional least squares approah

and the Parks-MCllelan method under the ondition of the

same number of multipliers.

Index Terms� FIR �lter design, oef�ient sparsity, l

0

approximation,

1. INTRODUCTION

The design of FIR �lters is an important issue in digital sig-

nal proessing. Many design methods have been proposed

by a number of authors [1℄-[12℄. Espeially the least-squares

(LS) method, whih minimizes the mean squared error of fre-

queny responses, is widely used due to its simpliity and

�exibility [7℄-[12℄.

Most of onventional �lter design approahes aim to min-

imize a �lter order and maximize the �lter performane. Even

though the FIR �lter oef�ients designed by the LS method

is optimal in the least squares sense, it is not neessarily opti-

mal among the set of �lters with the same number of multipli-

ers, that is, less mean squared error an be ahieved by a �lter

that has the same number of multipliers, but has longer im-

pulse response with some zero-valued entries. To minimize

the number of multipliers instead of the �lter order, some

approahes design the �lter with zero-valued taps, whih is

often alled sparse �lters [13℄-[14℄ (Fig.1). In [14℄, an ef�-

ient design method is proposed. However the method needs

to design �lters iteratively, and high omputational effort is

required for high order �lters.

In this paper, we present a numerial approah for design-

ing the sparse �lters. Our method onsists of two steps. In the

�rst step, we �nd the position of zero-valued oef�ients us-

ing the l

2

-l

0

optimization, and then in the seond step the �lter

oef�ients are determined while keeping the oef�ients de-

termined by the �rst step �xed to zero. Our method does not

�

We are grateful for the support of Japan Soiety for the Promotion of

Siene and KDDI Foundation.

Fig. 1. Impulse response of sparse �lters: 'x' indiates zero

oef�ients.

guarantee optimality in the sense of sparsity, but has better

performane than the onventional �lter design methods.

In Setion 2, the basi theory of the least squares method

for the FIR �lters is brie�y desribed. In Setion 3, our design

problem is formulated and a design algorithm that onsiders

the sparsity of oef�ients is proposed. In Setion 4, several

examples are illustrated to verify the validity of the proposed

algorithm, and a omparison with the onventional methods

are shown. In the last setion, we make omments on the

advantages of the algorithm.

2. CONVENTIONAL WEIGHTED LEAST-SQUARES

METHOD

The magnitude responseH(!) of the linear phase FIR �lters

and more general non-linear phase FIR �lters an be written

as a linear ombination of trigonometri basis funtions

H(!) =

N�1

X

n=0

a

n

�

n

(!); (1)

where, for example, �

n

(!) = os(n!) for even-order sym-

metri linear phase �lters, and �

n

(!) = e

jn!

for more gen-

eral formula.

Our design method an handle all types of the FIR �lters

expressed by (1), however due to the limited spae, we show

only the ase of the even-oder symmetri linear phase FIR

�lters.

We here repeatH(!) for the even-order symmetri �lter:

H(!) =

N�1

X

n=0

a

n

os(n!); (2)



whereN = (N

0

� 1)=2 + 1 andN

0

is its �lter length.

Here we brie�y review the onventional weighted LS

(WLS) method. Generally, the mean squared error of Eq.(2)

over the interval [0; �℄ is de�ned as

�

1

=

1

�

Z

�

0

W (!)jH(!)�D(!)j

2

d!; (3)

whereW (!) is a weight funtion whih is not identially zero

and has positive values, and D(!) is a desired frequeny re-

sponse. The optimal �lter oef�ients fa

n

g

N�1

n=0

in the LS

sense an be uniquely determined by solving the normal equa-

tion:

Qa = p; (4)

where

a = [a

0

a

1

� � �a

N�1

℄

T

p

m

=

1

�

Z

�

0

W (!)D(!) os(m!)d! (5)

Q

m;n

=

1

�

Z

�

0

W (!) os(m!) os(n!)d!; (6)

where p

m

and Q

m;n

are m-th and (m;n)-th elements of p

andQ, respetively.

WhenD(!) andW (!) are simple funtions, Eqs. (5) and

(6) an be easily alulated in a losed form. However, om-

monly, the integrals of Eqs.(5) and (6) are dif�ult to derive

if bothD(!) andW (!) are arbitrary. In partiular, when the

weight funtion is given by an error response, as in Lawson's

algorithm (disussed later), we an never alulate the inte-

gral in Eqs.(5) and (6). Therefore, in pratie, it is ef�ient to

de�ne the following ost funtion whih is expressed as the

�nite sum of the errors on the disretized frequeny points.

�

2

=

1

L

L�1

X

l=0

W (!

l

)jH(!

l

)�D(!

l

)j

2

(7)

We denote it by using the l

2

norm of the error

�

1=2

2

= kW (Ra� d)k

2

; (8)

where the (l; k)-th elements ofR is

R

l;k

= os(k!

l

) (9)

and

d = [D(!

0

) D(!

2

) � � � D(!

L�1

)℄

T

(10)

W = diagfW (!

0

) W (!

2

) � � � W (!

L�1

)g (11)

In this ase, p

m

andQ

m;n

of Eqs.(5) and (6) in the normal

equation are rewritten as follows.

p

m

=

1

L

L�1

X

l=0

W (!

l

)D(!

l

) os(m!

l

) (12)

Q

m;n

=

1

L

L�1

X

l=0

W (!

l

) os(m!

l

) os(n!

l

) (13)

3. DESIGN ALGORITHM

The onventionalWLS method is optimal in the LS sense un-

der the ondition that the �lter length is �xed. If one allows a

longer �lter length with some zero oef�ients, it an ahieve

better approximation than the non-sparse �lters with the same

number of multipliers. Our goal is to design suh sparse �l-

ters. The proposed design algorithm onsists of two steps as

shown below:

1. The positions of �lter oef�ients to be zero is deter-

mined. We aomplish it to solve the sparse approxi-

mation problem (disussed in Se.3.1).

2. The zero-valued oef�ients in the previous step are

�xed to zero and the �lter oef�ients are found by us-

ing a onventional least squares design (Se.3.3).

3.1. Sparse Approximation

Here we de�ne kak

0

as the number of non-zero elements in

a (It is often alled zero-norm or l

0

-norm, despite not satis-

fying the properties of the norm). Our aim is to approximate

the desired frequeny response by the linear phase FIR �lter

with minimum number of oef�ients. To ful�ll it, we de�ne

the �lter design problem as a proess to minimize the ost

funtion:

min

a

1

2

kW (Ra� d)k

2

2

+ �kak

0

; (14)

where d is a desired frequeny response and the parameter

� is introdued to ontrol the balane between the error of

the �lter and the number of the oef�ients. Sine the seond

term of the ost funtion (14) is a disrete metri, the problem

is inherently dif�ult to solve by onventional methods suh

as gradient deent based optimization.

We adopt a method based on the variable splitting and

quadrati penalty, whih is reently applied to image restora-

tion problems [15℄, [16℄, [17℄. Introduing an auxiliary pa-

rameter s that orresponds the oef�ients a, the problem

(14) is equivalent to the following minimization problem:

min

a;s

1

2

kW (Ra� d)k

2

2

+ �ksk

0

;

subjet to ka� sk

2

2

= 0 (15)

Instead of solving (15), we add the penalty term ka�sk

2

2

to the ost. In the end, our design problem is stated as

min

a;s

1

2

kW (Ra� d)k

2

2

+ �ksk

0

+



2

ka� sk

2

2

; (16)

where  is a weighting parameter that ontrols similarity be-

tween a and s. The strategy of the variable splitting approah

is that, we start with initial values of s

0

, and then repeatedly

solve two sub-problems:



1.

a

k

= argmin

a

1

2

kW (Ra� d)k

2

2

+



2

ka� s

k�1

k

2

2

(17)

2.

s

k

= argmin

s

�ksk

0

+



2

ka

k

� sk

2

2

(18)

3. 

k+1

= � � 

k

; (� > 1)

4. k = k + 1;

The �rst sub-problem (17) has a simple quadrati form. The

solution is determined by solving

(R

T

W

2

R+ 

k

I)a

k

= R

T

W

2

d+ 

k

s

k�1

(19)

The optimal solution of the seond sub-problem (18) is

found for eah oef�ient individually, that is, the problem

is equivalent to the minimization of the funtion E(s

n

) for

n = 0; 1; � � � ; N � 1 as follows

min

s

n

E(s

n

) = �C(s

n

) +



2

(a

n

� s

n

)

2

;

(n = 0; 1; � � � ; N � 1) (20)

where s

n

is an element in s, and the funtion C(s

n

) has 1 if

s

n

6= 0 and 0 otherwise (we omit the supersript k). In the

end, (18) is minimized when

s

�

n

=

�

0; a

2

n

< 2�=

a

n

; otherwise

(21)

(for derivation, see Appendix)

3.2. Balane ontrol

In the algorithm, the desired number of non-zero oef�ients

(denoted by N

d

) is spei�ed by a user. The parameter � in

theminimization problem (16) determines the number of non-

zero oef�ients. However it is dif�ult to expliitly formu-

late the relationship with � and N

d

. We adopt a heuristi

approah, in whih � adaptively hanges in the iterations a-

ording to the number of non-zero oef�ients. If the atual

number of non-zero oef�ients in an iteration is larger than

N

d

, � is inreased to r

u

�� (r

u

> 1), otherwise � is dereased

to r

l

�� (r

l

< 1), where r

u

, and r

l

are newly introdued sal-

ing parameters. When the number of the oef�ients reahes

N

d

, then � is �xed. The algorithm starts with large values of

r

u

and r

l

, then those are gradually dereased.

3.3. Constrained Filter Design

The aim of the algorithm in Se.3.1 is to �nd the positions

for the �lter oef�ients to be zero. One the positions are

determined, we re-design the �lter by the onstrained least

squares approah to ahieve an optimal �lter:

a

�

= argmin

a

�

2

s:t: a

n

= 0 (8n 2 S);

where S is the set of the positions of zero oef�ients. The

solution for the problem is given by solving the normal equa-

tion.

4. EXAMPLES AND COMPARISON

In this setion, several numerial examples are shown to ver-

ify the advantage of the proposed algorithm. All examples

were designed in MATLAB. All frequenies are normalized

by � and frequeny points are equally spaed.

Example 1: Least Squares Filter

A low-pass �lter with a narrow transition band was designed.

The �lter length N

0

is 1059 (N = 530) and the number of

non-zero oef�ients is N

d

= 859. The passband and stop-

band edges !

p

= 0:05 and !

s

= 0:055. The result is om-

pared to two onventional least squares approahes:

1. (LS1) Design a �lter of length N

d

by the onventional

LS method.

2. (LS2) Design a �lter of length N

0

by the onventional

LS method and then fore the N

0

�N

d

smallest oef-

�ients zero.

Fig.2 illustrates the log-magnitude response of �lters de-

signed the (a) LS1 and (b) the proposed method. The mean

squared errors of LS1, LS2 and the proposed method were

4:48 � 10

�3

, 4:34 � 10

�3

, 3:08 � 10

�3

, respetively.

We tested hundreds of design examples, and all examples

onverge to �lters with smaller errors than ones of the onven-

tional LS methods (LS1 and LS2). Some of them are listed in

Table 1.

Table 1. Squared error(!

p

: passband edge, !

s

: stopband

edge,N : �lter length,N

d

: # of non-zero oeffs., all the three

�lters listed have same number of non-zero oef�ients)

(!

p

; !

s

; N

0

; N

0

�N

d

), LS1 LS2 Proposed method

(0.2, 0.26, 99, 40) 2.00e-2 3.42e-2 1.24e-2

(0.1, 0.14, 199, 40) 2.23e-4 7.13e-4 1.46e-4

(0.1, 0.14, 199, 80) 3.60e-3 1.35e-2 2.00e-3

(0.1, 0.11, 459, 100) 1.47e-2 1.24e-2 9.69e-3

(0.03, 0.035, 1199, 400) 7.38e-3 1.16e-2 4.81e-3

(0.05, 0.052, 2059, 1000) 0.183 0.142 0.111

Example 2: Chebyshev approximation

In this example, we apply the proposed method to the Cheby-

shev approximation, and ompare it with the Parks-MClellan

(PM) algorithm [3℄.



In the algorithmmodi�ed Lawson's algorithm [12℄ is used

for the Chebyshev approximation, in whih the WLS prob-

lems are solved iteratively. In eah iteration the weighting

funtion is updated by

W

k+1

(!

l

) = W

k

(!

l

)

W

0

(!

l

)E

env

k

(!

l

)

P

i

W

0

(!

l

)E

env

k

(!

l

)

; (22)

where E

env

k

(!) is the pieewise-linear envelope funtion of

the error (for detail, see [12℄).

The algorithm for the Chebyshev approximation is stated

as follows.

1. The initial weight W

0

(!) is given and start with

W

1

(!) =W

0

(!).

2. Solve the sparse approximation in Se.3.1.

3. The weight is updated by (22).

4. If it onverges, then go to Step 5, otherwise go bak to

Step 2.

5. Fix the zero-valued oef�ients, the onventional Law-

son's algorithm [12℄ is performed to re-design the �lter.

We design the �lter, whose passband and stopband edges

are !

p

= 0:1 and !

s

= 0:13, respetively.

We ompare our results with the PM method that guaran-

tees its optimality for the non-sparse �lters

1

. We adjust the

initial weighting funtionW

0

(!) to obtain the same amount

of passband ripples, and then ompare the stopband ripple

with the PM method. Fig.3 shows the results of the designed

�lter with N = 259 and N

d

= 139. Table 2 gives some of

numerial design examples. Our method outperformes PM

method by 2-8 dB in the attenuation. Aording to the paper

[14℄, the sparse �lter [14℄ also inrease the level of attenua-

tion by 2-8 dB over the PMmethod. However themethod [14℄

needs iterative design of the optimal �lter, and if the length is

inreased, the number of iteration will beome muh larger.

On the other hand, in our algorithm the design of 300-tap

equiripple �lter needs only a few seonds to onverge with

Intel Core i7 2.93GHz CPU.

Appendix

This step is equivalent to hard thresholding in the shrinkage

algorithm. When s

n

6= 0, we have

E(s

n

) = � +



2

(a

n

� s

n

)

2

and then E(s

n

) has the minimum value

E(a

n

) = �

1

exeuted in MATLAB using '�rpm.m'

Table 2. Chebyshev Approximation (!

p

= 0:1, !

s

= 0:13,

N : �lter length, N

d

: # of non-zero oeffs., the length of

the PM �lter is N

d

, p.r.: maximum passband ripple[dB℄, s.a.:

minimum stopband attenuation[dB℄)

PM method Proposed Method

(N;N

d

) p.r. s.a. p.r. s.a.

(159, 79) 3.12e-2 25.2 3.12e-2 30.1

(199, 99) 1.60e-2 27.9 1.60e-2 35.9

(239, 119) 8.75e-3 33.1 8.75e-3 41.2

(259, 139) 5.53e-3 37.6 5.53e-3 45.1

(319, 179) 2.33e-3 48.9 2.33e-3 52.6
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Fig. 2. Example 1 (a) Conventional LS method, (b) Sparse

Filter

at s

n

= a

n

. In the ase of s

n

= 0,

E(0) =



2

a

2

n

holds.

Thus if

� >



2

a

2

n

is satis�ed, E(s

n

) has the minimum value



2

a

2

at s

n

= 0.

Otherwise E(s

n

) has minimum value � at s

n

= a

n

. In the

end, (21) holds.

(a) (b)

Fig. 3. Example 2 (a) PM method, (b) Sparse Filter
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