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White Balancing by Using Multiple Images via Intrinsic Image
Decomposition∗
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SUMMARY Using a flash/no-flash image pair, we propose a novel
white-balancing technique that can effectively correct the color balance of
a complex scene under multiple light sources. In the proposed method,
by using multiple images of the same scene taken under different light-
ing conditions, we estimate the reflectance component of the scene and
the multiple shading components of each image. The reflectance compo-
nent is a specific object color which does not depend on scene illumination
and the shading component is a shading effect caused by the illumination
lights. Then, we achieve white balancing by appropriately correcting the
estimated shading components. The proposed method achieves better per-
formance than conventional methods, especially under colored illumination
and mixed lighting conditions.
key words: white balance, intrinsic image, decomposition, sparsity, flash
image, `0 norm

1. Introduction

White balancing is an important tool to correct the chromi-
nance of images in order to replicate the color consistency
of the human visual system. Several white balancing tech-
niques have been proposed [?], [?], [?], [?, ]. Many stud-
ies, however, did not focus on mixed lighting conditions.
Namely, they assume that the photograph was taken under a
single illuminant source. Recently, most commercial cam-
eras and photo editing tools involve some practical function-
ality to recover natural white balance. Most of them, how-
ever, cannot realize adequate white balancing, especially un-
der the colored illumination and mixed lighting conditions.
Indoor scenes often have colored illumination of artificial
light, or mixed illumination of artificial and natural lights.
Several reported techniques for the white balancing under
the mixed lighting conditions have been proposed [?], [?],
[?], [?, ]. However, the methods require user interaction or
are based on restrictive assumptions. For example, in [?, ],
to correct localized color casts, they use a scribble interface
and achieve an effective correction. In contrast, Hsu et al.
[?, ] proposed a semi-automatic white balancing technique
for real scenes with two light types, but they assume that the
illuminant colors are known. Although a recently proposed
method [?, ] achieves a better performance than the other
methods, it still requires user interaction.
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Barrow and Tenenbaum [?, ] introduced the technique
of the intrinsic image decomposition to separate the re-
flectance component and the shading component, two com-
ponents that represent the observed image with Lambertian
surfaces. The reflectance component is a specific object
color that does not depend on scene illumination unlike the
shading component, which is a shading effect caused by the
illumination lights. Based on their theory, many intrinsic
image decomposition techniques have been proposed by a
number of authors [?], [?], [?], [?], [?], [?], [?], [?], [?, ], and
it is useful for several applications in computer vision, such
as scene illumination transfer [?, ] and colorization [?, ].
However, intrinsic image decomposition is a major chal-
lenge due to the ill-posedness that there are two unknown
components for one observed image. In addition, many con-
ventional methods assume a single white illuminant con-
dition. Under the mixed lighting conditions, the color of
the illuminant sources are intricately mixed on each point of
a scene object surface, which makes it a more challenging
problem than the case of a single illuminant.

Meanwhile, image processing with the flash/no-flash
image pair [?], [?], [?, ] have been actively studied and at-
tracted attention as an effective method to overcome the per-
formance limitation of classical single image-based meth-
ods. In these methods, the noise-free flash image taken by
an electronic flash is utilized as a reference image to restore
the noisy no-flash image. In addition, by estimating the
scene illumination color from a flash/no-flash image pair,
the method in [?, ] achieves white balancing. However, this
method fails and produces an unexpected color artifact un-
der the complex lighting conditions.

In this paper, we present a novel approach for the re-
flectance estimation. In general, the contribution estima-
tion of each light from a single image is a severely ill-
posed problem. We overcome this difficulty by utilizing
a flash image as a reference. Our technique estimates the
reflectance component of the specific object color, and the
shading components from a flash/no-flash image pair. Then
we achieve the white balance correction by appropriately
correcting the estimated shading components. The proposed
method achieves good performance, especially under col-
ored illumination and mixed lighting conditions.

In Section 2, we discuss the intrinsic image decompo-
sition that becomes a key technique of the proposed method.
Our decomposition problem is formulated by the optimiza-
tion problem with `0,1 norm, furthermore, a decomposition
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algorithm that estimates the reflectance and shading compo-
nents is proposed. In Section 3, several examples are shown
to verify the validity of the proposed algorithm, and to com-
pare our work to several conventional methods. In the last
Section 4, we briefly conclude this paper.
Notation: Our method mainly consists of two steps. We treat
images in the log domain in the first step, and linear domain
in the second step. In the manuscript, we summarize the
notation for images x = {q, r, s1s2} as follows
x : images in the log domain
x̂ : the linear version of x, that is, x = log x̂
x̄, x̃ : images in the linear domain, used in the second step

2. Intrinsic Image Decomposition

The intrinsic image model [?, ] assumes that an image
scene is the product of a scene’s reflectance (also called
albedo) and shading (or illuminant) at each pixel, expressed
as q̂ = r̂ ⊗ ŝ where q̂ = [q̂>R q̂>G q̂>B]> ∈ R3N is a vectorized
observed color image, where N is the number of the pixels,
and (·)> stands for the transposition of (·). Also, r̂ ∈R3N is
the reflectance, and ŝ∈R3N is the shading. The operator ⊗ is
a pixel-wise multiplication. The intrinsic image decomposi-
tion aims to estimate r̂ and ŝ, given an input image q̂. This
can be reformulated by taking the log of the images:

q = r + s, (1)

where q = log q̂ and so on. Our goal is to estimate the re-
flectance and shading components and to correct its white
balance using them. This decomposition is inherently a
challenging problem since the equation (1) is severely un-
derdetermined. One solution is to apply tractable prior
knowledge to solve the problem [?], [?], [?, ]. Their meth-
ods are based on a simple assumption that the reflectance
has piecewise constant region with sharp edges, whereas the
shading component smoothly varies between pixels.

The proposed white balance correction mainly consists
of two steps:

1. Estimate a single reflectance r and two shading compo-
nents s1, s2, which correspond to a flash/no-flash image
pair q1, q2, respectively.

2. Appropriately correct the estimated shading compo-
nent s2 of the no-flash image q2 to eliminate illuminant
colors, and then simply conduct the white balancing
by adding the corrected shading component to the re-
flectance r.

Figure 1 shows the flow of our method.

2.1 Proposed intrinsic image decomposition problem

The first step decomposes two input images into the re-
flectance and shading components. We assume that the in-
puts are well aligned and no further registration or motion
compensation is needed, and the two inputs have a common
reflectance. We find a single reflectance component and two

Fig. 1 The flow chart of the proposed method.

shading components by minimizing the cost function:

min
r,s1,s2
‖Dr‖0,1 +

2∑
i=1

wsi‖Lsi‖22 +
2∑

i=1

w f i‖qi − (r + si)‖22,

s.t. b j ≤ r j ≤ t j, b j ≤ s1 j ≤ t j, b j ≤ s2 j ≤ t j, for ∀ j, (2)

where r j, s1 j, and s2 j are a j-th elements of r= [r>R r>G r>B]> ∈
R3N , s1 ∈ R3N and s2 ∈ R3N respectively. The two inputs
q1 ∈ R3N and q2 ∈ R3N are the flash and no-flash images
respectively. L = diag{L′,L′,L′} ∈ R3N×3N is a convo-
lution matrix representing a laplacian operator L′ ∈ RN×N ,
D= diag{D′,D′,D′} ∈R6N×3N consists of the vertically con-
catenated first-order differential operators D′ = [D>h D>v ]> ∈
R2N×N with horizontal Dh ∈ RN×N and vertical operators
Dv ∈RN×N . The norm for the vectorized color image gradi-
ents ‖Dr‖0,1 is defined by the operator C(m), which returns
0 if m is 0, and 1 otherwise, by

‖Dr‖0,1 =
N∑

n=1

C
(
|∂xrRn| + |∂yrRn| + |∂xrGn| + |∂yrGn|

+|∂xrBn| + |∂yrBn|
)
, (3)

where n is a pixel index, rRn, rGn and rBn are the n-th RGB
channels of r respectively. Our feature is that we relax the
relationship (1) by allowing some reconstruction error and
directly find the two shading components, and we use the
`0,1 norm† in the first term to treat the RGB channels simul-
taneously. To take account of the properties of the locally
flat reflectance, we introduce the `0 based term in (2). In-
stead of the simple `0 norm, we use the `0,1 norm consid-
ering the sparseness of the gradients of all the three color

†The `0,1 norm is essentially same as `0,2 norm introduced in [?,
], and also a simple extended version of `0 norm which is utilized
for image smoothing in [?, ].
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channels. By introducing the `0,1 norm, fake color artifact
due to violation of the color balance is relieved, which is
important treatment especially for our white balance appli-
cation. The second term is introduced to satisfy the prop-
erties of the shading whose gradient gradually varies. The
third term penalizes the decomposition error. To obtain a
meaningful solution for r, s1 and s2, we consider the con-
strained problem with the specific range constraint for each
pixel of the three images.

Since the cost function is non-convex due to the `0,1
norm, and likewise there is an inequality constraint, it is im-
possible to solve it by conventional gradient-based methods.
To solve the problem, we introduce auxiliary variables and
adopt the penalty function method. By introducing the aux-
iliary variables zi(i=1, 2, 3, 4), the cost function to minimize
in each iteration of the algorithm is given by

min
r,s1,2,z1,2,3,4

f (r, s1,2, z1,2,3,4), where

f (r, s1,2, z1,2,3,4) = ‖z1‖0,1 +
2∑

i=1

wsi‖Lsi‖22

+

2∑
i=1

w f i‖qi − (r + si)‖22 +
4∑

i=2

ι(zi) + α‖Dr − z1‖22

+α‖r − z2‖22 + α‖s1 − z3‖22 + α‖s2 − z4‖22. (4)

ι(·) is an indicative function, which is defined for each j-th
elements of x∈R3N :

ι(x j) =
{

0, if b j ≤ x j ≤ t j
+∞ otherwise . (5)

The indicative function guarantees that the optimal solu-
tion falls in the range [b j, t j]. The auxiliary variables zi(i=
1, 2, 3, 4), are introduced for Dr, r, s1 and s2, respectively,
and then we add the `2 penalty terms between the four pairs.
Here, α is a weight that we increase during iterations of
the algorithms. As α gets larger, the solution gets closer
to the solution of the original cost function (2). We al-
ternately minimize (4) w.r.t. each of the seven variables
r, s1, s2, zi(i = 1, 2, 3, 4) with other variables fixed. Overall
of this algorithm is roughly shown in Algorithm 1. The so-
lutions for all of these seven sub-problems are readily cal-
culated as follows.

2.1.1 Optimal solution for r, s1 and s2

The sub-problem w.r.t. s1 in Step 5 of Algorithm 1 is rewrit-
ten as follows (superscript k is omitted hereafter):

min
s1

f (s1|r, s2, z1,2,3,4), where

f (s1|r, s2, z1,2,3,4) = ws1‖Ls1‖22 + w f 1‖q1 − (r + s1)‖22
+α‖s1 − z3‖22. (6)

From (6), the problem w.r.t. s1 is a simple quadratic form.
Thus, by setting the first-order derivative of (6) to zero, the
optimal solution is determined by solving

Algorithm 1 Algorithm for solving (4)
1: flash q̂1, and no-flash image q̂2 are given, and they are transformed to

log domain q1 and q2.
2: set k = 0, and choose the weights wsi, w f i (i = 1, 2) and α, η.
3: Choose r(0), s(0)

1 , s(0)
2 , z(0)

i (i = 1, 2, 3, 4).
4: while a stop criterion is not satisfied do
5: s(k+1)

1 = arg min
s1

f (s1 |r(k), s(k)
2 , z

(k)
1,2,3,4)

6: s(k+1)
2 = arg min

s2

f (s2 |r(k), s(k+1)
1 , z(k)

1,2,3,4)

7: r(k+1) = arg min
r

f (r|s(k+1)
1 , s(k+1)

2 , z(k)
1,2,3,4)

8: z(k+1)
1,2,3,4 = arg min

z1,2,3,4

f (z1,2,3,4 |r(k+1), s(k+1)
1 , s(k+1)

2 )

9: α = η · α, k = k + 1
10: end while
NOTE: f (a|b) indicates the function of the variable a with given b.

(ws1L>L + (w f 1 + α)I)s1 = w f 1(q1 − r) + αz3, (7)

where I∈R3N×3N is an identity matrix.
Similarly, the optimal solution of s2 is obtained by solv-

ing the following equation,

(ws2L>L + (w f 2 + α)I)s2 = w f 2(q2 − r) + αz4. (8)

The sub-problem w.r.t. r in Step 7 of Algorithm 1 is
rewritten as:

min
r

f (r|s1, s2, z1,2,3,4), where

f (r|s1, s2, z1,2,3,4) =
2∑

i=1

w f i‖qi − (r + si)‖22

+α‖Dr − z1‖22 + α‖r − z2‖22. (9)

From (9), the problem w.r.t. r is also a simple quadratic
form. Thus, by setting the first-order derivative of (9) to
zero, the optimal solution is determined by solving

(αD>D + (w f 1 + w f 2 + α)I)r =

αD>z1 +

2∑
i=1

w f i(qi − si) + αz2. (10)

As described above, the sub-problem for each of r, s1 and
s2 is a simple least squares problem whose solutions can
be found by solving the linear equation of the form Ax =
b. Since the matrix to solve for the sub-problems (7), (8)
and (10) is a block circulant matrix with circulant blocks
(BCCB), it is diagonalized by FFT, thereby the solution can
be quickly calculated.

2.1.2 Optimal solution for z1

Note again that the vector r = [r>R r>G r>B]> ∈ R3N is
composed of the RGB channels of the image, and Dr is
a 6N-dimensional vector composed of the derivative w.r.t.
the horizontal/vertical directions of r. The auxiliary vector
z1 ∈R6N , which is introduced in place of Dr, is of the form:

z1 = [z(h)>
1R z(v)>

1R z(h)>
1G z(v)>

1G z(h)>
1B z(v)>

1B ]>.
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z(h)
1R , and z(v)

1R are the red channel of z1 and so on. The su-
perscript ·(h) and ·(v) indicates that they corresponds to the
horizontal and vertical derivatives, respectively.

From (4). the sub-problem w.r.t. z1 is rewritten as,

min
z1

f (z1|r, s1, s2, z2,3,4), where

f (z1|r, s1, s2, z2,3,4) = ‖z1‖0,1 + α‖Dr − z1‖22. (11)

The optimal solution of (11) is found for each element indi-
vidually by applying group hard shrinkage to the total sum
of the square of gradients in the RGB channels. The prob-
lem (11) is equivalent to solving the following cost function
for all pixels n = 1, · · · ,N.

En = C

 5∑
l=0

|z1(n+lN)|
 + α 5∑

l=0

(
gn+lN − z1(n+lN)

)2 , (12)

where z1(n+lN) is a (n+ lN)-th element of z1, and z1(n+lN), (l=
0, 1, · · · , 5) corresponds to the derivatives at a pixel n w.r.t.
the both directions in the RGB channels. gn+lN is the (n+lN)-
th element of g=Dr ∈R6N . The first term of (12) returns 0
if all of the derivatives at a pixel n w.r.t. the both direc-
tions in all the three channels are 0, and otherwise, returns
1. The second term ensures that the auxiliary valuables z1
approximate g at a pixel n. The optimal solution for (12) is
obtained by group hard shrinkage (its derivation is found in
Appendix):

z∗1(n+lN) =

{
0, if

∑5
l=0 g

2
n+lN ≤ 1/α

gn+lN , otherwise . (13)

Applying the thresholding operation to every pixel, we ob-
tain the solution of the sub-problem.

2.1.3 Optimal Solution for z2,3,4

To avoid the trivial solution, we add the range constraints
for each r, s1 and s2 to the cost function (2). To solve (2),
we introduced the indicative function (5) to construct the un-
constrained minimization problem (4). Since the indicative
function ι(·) is not differentiable w.r.t. r, s1 and s2. The aux-
iliary variables z2,3,4 are introduced to solve this problem for
variables r, s1 and s2. Here we describe the solution for the
case of z2. The same procedure can be applied to z3 and z4.
From (4), the sub-problem w.r.t. z2 is rewritten as follows:

min
z2

f (z2|r, s1, s2, z1,3,4), where

f (z2|r, s1, s2, z1,3,4) = ι(z2) + α‖z2 − r‖22. (14)

The optimal solution of (14) is found for each j-th element
individually, that is,

z∗2 j =


t j, if r j > t j
r j, if b j ≤ r j ≤ t j
b j, if r j < b j

. (15)

Similarly, by replacing the variable r j with s1 j or s2 j, the

(a) Example 1: Puppets (b) Example 2: Toys (c) Example 2: Flower

Fig. 2 Scenes with multiple light sources used in our experiment.

optimal solution of z3 j or z4 j is also introduced. As afore-
mentioned, z2,3,4 can be quickly updated. One can refer the
literatures [?], [?], [?, ] for the detail of the sub-problems.

2.2 White Balance Correction

In the previous section, the reflectance and shading compo-
nents are calculated by solving the proposed decomposition
problem. However, due to its insufficient estimation accu-
racy, object colors may still remain in the estimated shading
components. Next, we discuss about the detail of the pro-
posed white balance correction. We assume that the scene
illumination contains one or a few dominant colors, and the
chrominance of the shading has one or a few dominant val-
ues. Based on this assumption, we attempt to remove un-
desired colors from the shading components. We transform
the shading components in the linear scale ŝ1 and ŝ2 to the
YUV color space. The two chrominance components in the
YUV color space are denoted by ŝU

1 , ŝV
1 , and so on. Then we

decompose each of the U and V components by using

min
dU ,s̄U

1 ,s̄
U
2

‖dU‖0+
2∑

k=1

λk‖Ls̄U
k ‖22+

2∑
k=1

βk‖ŝU
k −(dU+ s̄U

k )‖22, (16)

where dU ∈ RN is the chrominance component of a scene
object, s̄U

1 , s̄
U
2 ∈ RN are the chrominance components of the

shading component for a flash and a no-flash image respec-
tively. ŝU

k (k = 1, 2) is the linear-domain version of sU
k ob-

tained in Sect.2.1. Here, we assume that the estimated shad-
ing component includes an object color information, and
we remove it by using `0-based smoothing. We introduce
the second term based on the prior on the shading compo-
nent. The third term guarantees that the decomposition er-
ror is satisfactory small. The same procedure is applied for
V components to obtain dV , s̄V

1 , and s̄V
2 . This cost function

is also non-convex due to the `0 norm, and thus we solve
it by the penalty function method, which is similar to the
procedure in the previous section. The solution is quickly
obtained by iteratively applying hard shrinkage and the least
squares method implemented with FFT.

Once the solution for (16) is obtained, the set of
smoothed chrominance dU , dV , and the illuminance of ŝ2
is transformed to the RGB space (denoted by s̃2). Then a
final white-balanced result q̃ is obtained by the product of r̂
and s̃2, where r̂ is the image in the linear domain obtained
in Sect.2.1.
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(a) Input flash/no-flash image pair

(b) Estimated shading components

Fig. 3 Weiss [?, ] + Retinex [?, ]: the result is obtained using a flash/no-
flash image pair.

3. Experimental Results

We show the validity of the proposed method by applying
it to a variety of scenes taken by under the mixed lighting
conditions, which are shown in Fig.2. Using multiple im-
ages taken by different lighting conditions with same scene
makes the decomposition easier than a single image. Weiss
[?, ] also takes advantage of it, and Grosse et al.’s paper
[?, ] shows that the method [?, ] with Retinex algorithm
[?, ] outperforms other conventional methods. However, as
shown in Fig.3, which is derived by Weiss’s algorithm with
Retinex [?, ]†, the algorithm often fails since only the two
images are inadequate and require a large amount of im-
ages. Moreover, as the method handles only edges, it does
not work well when input images have different colors like
flash/no-flash images. Thus we adopt [?, ] and a modified
version of Li et al.’s method [?, ] for comparison, which is
described in the next example.

Since it requires a heavy effort (or even impossible in
many cases) to obtain ground truth of reflectance compo-
nents, it is difficult to precisely perform a quantitative com-
parison. Meanwhile, white balancing under colored and
multiple light sources is an appropriate application to eval-
uate the preciseness of the intrinsic image decomposition,
since a precise decomposition will cancel color artifacts
caused by the light. In this section, we show some compari-
son with figures for the decomposition and white balancing.

3.1 Example 1

First we apply our method to a flash/no-flash image pair
(shown in Fig.3(a)), which is used in [?, ]. We compare
our result with the recently proposed image decomposition
method [?, ]. Although this method [?, ] is not designed
for white balancing, it is reasonable to compare with it to
show the validity of our algorithm. For fair comparison, we
slightly change the method [?, ] to handle two inputs, i.e.,

†We use the author-provided software [?, ].

the minimization problem used in the method is modified to

min
r
ρ(Dr)+λ

2∑
i=1

‖L(qi − r)‖22, s.t. b j ≤ r j ≤ t j, for ∀ j,

where r ∈ R3N is a reflectance component, q1 ∈ R3N and
q2 ∈R3N are the flash and no-flash images respectively. L=
diag{L′,L′,L′} ∈R3N×3N is a convolution matrix represent-
ing a laplacian operator L′ ∈ RN×N , D = diag{D′,D′,D′} ∈
R6N×3N consists of the vertically concatenated first-order
difference operators. Li and Brown [?, ] assumed that the
gradient probability of a reflectance component can be ap-
proximated by the Gaussian-like distribution with a long
tail, and introduced the function ρ(x) = min{x2/k, 1}, where
x is a gradient value and k is a small constant value (they
set 10−4 to k). This problem is essentially the two-input
version of [?, ]. The first term is a regularization term of
a reflectance component with ρ(·). The second term is a
regularization term of each shading component (from (1),
si = qi − r). After this optimization, we obtain results of the
conventional method by adopting only the luminance of the
obtained shading component (i.e., the color components U,
V are eliminated in the YUV color space) and then adding it
back to the reflectance.

Figure 4 shows the results of the reflectance r̂, and the
shading ŝ1 and ŝ2. The estimated reflectance component by
our method has the vivid object color without the illumina-
tion color. In contrast, the result of the conventional method
has the reddish illumination color, especially the face of
puppet on the right. The proposed method has a better de-
composition performance than the conventional method.

In our white-balance technique, we extract the scene
object color from the estimated shading components, and
then we reconstruct the final white-balanced image by the
only luminance of the shading component, while keeping
the extracted scene color in the second step. Here we show
our second step results in Fig.5. From our decomposition re-
sults of Fig.4, we can find that the red color of the puppet’s
cheek on the right is included in the shading components. In
Fig.5, this red color components, which must be kept in the
white-balancing process, has been extracted as the chromi-
nance component of a scene object (i.e. dU and dV ).

Figure 6 shows the final white-balanced result, and its
close-up. In the conventional method, the scene object color
is seriously faded, especially in the face of puppet on the
right. Additionally, the reddish illumination color remains
in the result. In contrast, our method realizes more natural
white balancing.

Figure 7 illustrates the convergence plot for the values
of the cost (2). From Fig.7, we confirm that the algorithm
converges after a few dozens of iterations. In order to im-
prove its numerical stability, we set η = 1.6 in Step 9 of the
Algorithm 1.

3.2 Example 2

In this experiment, we prepare a pair of input images with
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Proposed method

Two-input version of [?, ]

Fig. 4 The intrinsic image decomposition result of Example 1: (left to right) Reflectance, Shading of
flash image, Shading of no-flash image.

no positional displacement by using CANON EOS 20D and
a tripod. The white balance setting of the camera is fixed
to the auto white balance (AWB) mode, except for the man-
ual white balance results in Fig.9. In Fig.2(b)-(c), we show
the images taken under the mixed lighting conditions. This
scene has two or three different color light sources. From
Fig.2(b)-(c), it can be seen that the AWB mode is inadequate
under the complex lighting conditions.

We demonstrate the decomposition results by the pro-
posed method in Fig.8. These scenes consist of the multi-
ple colored illumination sources. The scene of the ”Toys”
contains reddish illumination, bluish fluorescent lamps and
sunlight. The scene of the ”Flower” contains reddish and
greenish illumination. From Fig.8, the estimated shading
components have these colored illumination. In contrast,
the reflectance component retains the original color of the
scene objects without the illumination colors. Our method
can estimate the reflectance and shading components from
the flash/no-flash image pair with high accuracy.

For comparison, we take an image with in-camera man-
ual white balancing (MWB) mode, which estimates a refer-
ence point using an image of a white object photographed
in advance. We also compared our white balancing results
with the statistical color transfer of Pitié et al.’s method [?, ].
In [?, ], the color statistics of a source image are transformed
to the color statistics of a reference image. To achieve the
white balancing by [?, ], we set the no-flash image as a
source image and the flash image as a reference image. Fig-
ure 9 shows the results of the conventional method [?, ],
the MWB mode, [?, ] and proposed method. The reddish
color is remained in the results of the MWB, [?, ] and [?,
] for the ”Toys” result. Also, the greenish and reddish col-
ors are remained in the results of the MWB and [?, ] for the
”Flower” result. Especially, significant differences appear
on the white petals and the body of the red color objects.
Furthermore, in the result of [?, ], the original color of the

(a)

(b)

(c)

Fig. 5 The results of the second step: (a) dU and dV , (b) s̄U
1 and s̄V

1 , (c)
s̄U

2 and s̄V
2 .

scene object is faded. In contrast, our method can eliminate
the color of illumination more than the others, while main-
taining the vivid color of objects.

4. Conclusion

In this paper, we proposed a novel white balance correc-
tion technique. The proposed method adopts a two-step ap-
proach. In the first step, we estimate the reflectance and
shading components from the flash/no-flash image pair by
applying intrinsic image decomposition. In the second step,
we eliminate the color component of each estimated shad-
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Proposed method

Two-input version of [?, ]

Fig. 6 The final white-balanced result of Example 1: (left to right)
White-balanced result, and Close-up of the result.

Fig. 7 Evolution of the objective function value of the proposed opti-
mization problem (2) using the ”Puppets” as input image pair.

Example 2: Toys

Example 2: Flower

Fig. 8 Example 2: (Left to right) Reflectance, Shading of flash image,
and Shading of no-flash image obtained by our method.

ing component. Then we achieve the white balance cor-
rection by reconstructing the reflectance component and
the appropriately corrected shading component. Experi-
ments showed that the proposed method can achieve bet-
ter performance under the mixed lighting conditions. Our
method outperforms conventional intrinsic image decompo-
sition technique and color correction technique.

MWB

Statistical color transfer method [?, ]

Two-input version of [?, ]

Proposed method

Fig. 9 Example 2: The white-balanced results of (top to bottom) MWB,
[?, ], [?, ], and Proposed method.
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Appendix: Derivation of (13)

We denote again the cost function (12)

En = C

 5∑
l=0

|z1(n+lN)|
 + α 5∑

l=0

(
gn+lN − z1(n+lN)

)2 .
When z1(n+lN) , 0 for l = 0, 1, . . . , 5, the cost function is

En(z1(n+lN)|l=0,1,...,5) = 1 + α
5∑

l=0

(
gn+lN − z1(n+lN)

)2 .
Then, it takes a minimal value when z1(n+lN) = gn+lN for

l = 0, 1, . . . , 5, and the cost function is

En(z1(n+lN)|l=0,1,...,5) = 1 + α
5∑

l=0

(gn+lN − gn+lN)2 = 1 (A· 1)

When z1(n+lN) = 0 for l = 0, 1, . . . , 5,

En(z1(n+lN)|l=0,1,...,5) = 0 + α
5∑

l=0

(gn+lN − 0)2 = α

5∑
l=0

g2
n+lN (A· 2)

If the cost (A· 1) is larger than (A· 2), the optimal solution for
l = 0, 1, . . . , 5 is given by z∗1(n+lN) = 0; otherwise, z∗1(n+lN) =

gn+lN , which yields (13).
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