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ABSTRACT

We propose a denoising technique using multiple image inte-
gration. When acquiring a dark scene, the detail of the dark
area is often deteriorated by sensor noise. A simple image
integration inherently has the capability of reducing random
noises. In this paper we develop the denoising performance
of the multiple image integration by optimizing weight maps.
We determine the optimal weight by solving a convex opti-
mization problem. Through some experimental results, we
show the weight optimization significantly improves the de-
noising performance.

Index Terms— Image Integration, Denoising, Convex
Optimization, High Dynamic Range Images

1. INTRODUCTION

It is a challenging problem to take a sharp photograph without
any noise under a low lighting condition. In a long exposure
setting, an image is blurred due to object motion and camera
shake, while short exposure photography in shadows often
requires high ISO sensitivity, which results in noisy images.
Many methods have been proposed for denosing and deblur-
ring images [1]-[6]. Image integration is one of the simplest
solutions for the denoising problem. Taking the mean of well-
aligned multiple images with short exposures can reduce the
random noises [3].

In the last decade, demand for high dynamic range (HDR)
imaging has been increasing [7]. In general, the HDR im-
age is generated by combining some photographs taken with
multiple exposure settings [7]-[11]. To get a high dynamic
range, several photographs with short to long exposures are
integrated. When taking photographs with a hand held cam-
era in a dark lighting condition, a high ISO setting is required
to restore the dark area without blurring artifacts, which yields
noisy images. The dynamic range of a sensor is usually de-
fined by the maximum achievable signal intensity divided by
the maximum level of the camera noise, and thus the sensor
noise brings down the dynamic range.

In [6], a weight function is designed to reduce sensor
noises and quantization noises, but it is not optimal in any
sense. Recently, a weight optimization method is proposed
in [12] for the image integration. The main purpose of the
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method is image-stitching, and they do not consider the mul-
tiple image denoising.

In this paper, we propose a method for the multiple image
integration. The main contribution of the proposed method
is that we find the optimal weight by using a convex opti-
mization technique. We show that the weight optimization
significantly improves the capability of denoising compared
to conventional approaches.

In the following section, we explain the multiple image
integration procedure including the HDR acquisition. In Sec-
tion 3, we introduce a method for the weight optimization.
The problem is formulated as a convex optimization problem,
and it is solved by the primal-dual splitting approach [13]. In
Section 4, we simulate our method with some images with
actual sensor noise, and then we compare results with con-
ventional denoising approaches, and quantitatively show the
validity of the method.

2. MULTIPLE IMAGE INTEGRATION

Let lk ∈ �N (k = 1, 2, · · · ,K) be vectors representing noisy
observed images withN pixels. The multiple image inte-
gration can be expressed by the linear combination of theK
weighted imagesLkwk, (k = 1, 2, · · · ,K):

h =
K∑

k=1

Lkwk (1)

whereLk ∈ �N×N is a (N × N) diagonal matrixLk =
diag{lk}, wherewk (∈ �N ) is a set of weight maps. To
preserve the energy of the image, the weight maps are nor-
malized to

∑K
k=1 wk = 1, where1 ∈ �N is the vector of all

ones.
In a case of the multiple exposure integration, to accu-

rately linearize the images, we need to compensate for the
nonlinearity by estimating the inverseg−1 of an in-camera
intensity transform [7]. Here we call the transform a ”cam-
era response curve” denoted byg that gives the relationship
l̂k = g(̄lk), wherel̂k, l̄k ∈ �N are an observed image and
a sensor output, respectively. If one uses raw images, and an
image sensor has a linear sensitivity characteristic, this pho-
tometric calibration can be skipped. Among existing meth-
ods for the calibration problem, we adopt Mitsunaga et al.’s
method [10] to findg−1, in which the curve is approximated



by a low order polynomial using multiple images and expo-
sure values. Once the curve is estimated, the images are lin-
earized bylk = g−1(̂lk)/tk, wheretk is an exposure time of
thek-th image. In our method, the multiple exposure images
are taken by varying the exposure time of a camera with other
settings fixed. Then the images are merged by (1) to create
the HDR image.

3. PROPOSED METHOD

In our framework, we need to find the denoised imageh and
the weightwk with lk given. Finding the optimal values for
the two variables simultaneously inherently leads to ill-posed
and non-convex optimization. Thus we first use the conven-
tional weight in [8] as an initial guess and then constructh
using the method in Sec. 3.1. With the obtained image, we
optimize the weight as is explained in Sec. 3.2. Finally we
again apply the method in Sec. 3.1 with the optimal weights
to obtain a final result.

3.1. TV Denoising

To findh, we adopt the conventional Total Variation denois-
ing method [14]. Given the weightwk, the problem is defined
as

min
h

∥
K∑

k=1

Lkwk − h∥22 + γ ∥h∥TV (2)

where∥ · ∥TV is the anisotropic Total Variation regularization
term. This minimization problem can be solved by a con-
vex optimization method. In the optimization procedure, we
iteratively perform the two steps, solving a linear equation
and a shrinkage operation. Using the diagonalization by FFT
and a soft-thresholding function, one can obtain the solution
quickly (for detail, see [14]).

3.2. Weight Optimization

The optimization for the weightwk is fulfilled by

min
w

∥p̄w − h∥22 + α ∥Dp̄w∥1

s.t.
K∑

k=1

wk = 1, and wk ∈ S (k = 1, 2, · · · ,K) (3)

where p̄w =
∑K

k=1 Lkwk, D ∈ �N×N is a convolution
matrix representing a derivative operation, and

S = {x ∈ �N | xi ∈ [0, 1] (i = 1, 2, · · · , N)}.

Using the following relationship

p̄w =

K∑
k=1

Lkwk =

K−1∑
k=1

(Lk − LK)wk + lK (4)

and introducing the two matrices,P ∈ �N×N(K−1) andw ∈
�N(K−1) as

P = [(L1 − LK) (L2 − LK) · · · (LK−1 − LK)]

w =
[
wT

1 wT
2 · · · wT

K−1

]T
,

then Eq.(3) is rewritten as an unconstrained problem:

min
w

∥Pw + (lK − h)∥22 + α ∥D(Pw + lK)∥1

+ιS(Cw) +

K−1∑
k=1

ιS(wk) (5)

whereιS denotes the indicator function,

ιS(v) =

{
0, if v ∈ S
+∞, if v /∈ S,

(6)

andC ∈ �N×N(K−1) is a{N×N(K−1)}-matrix composed
of theK − 1 identity matrices

C = [IN IN · · · IN ]︸ ︷︷ ︸
K−1

.

The third term of (5) guarantees the solution satisfies
∑K

k=1 wk =

1 by takingwK = 1 −
∑K−1

k=1 wk, and the forth term forces
wk to be in the range[0, 1].

The cost function (5) is convex and thus can be solved
by the primal-dual splitting approach [13]. The primal-dual
algorithm solves the minimization problem of the form

min
x

F (x) +G(x) +H(Lx), (7)

whereF , G, H are proper, lower semicontinuous, convex
functions in a real Hilbert space, andF is differentiable, and
∇F is β-Lipschitz continuous.L is a bounded linear oper-
ator. For the primal-dual algorithm to be applicable to our
problem, we set

F (x) =
α

2
∥Px+ (lK − h)∥22

G(x) = 0

L =


DP
C

IN 0 · · · 0
0 IN · · · 0

. . .
0 0 · · · IN


︸ ︷︷ ︸

K−1

(∈ �(N(K+1)×N(K−1))

H(u) = α ∥xa + ld∥1 + ιS(xb) +

K−1∑
k=1

ιS(xck)

where ld = DlK and

u = [xT
a xT

b xT
c1 xT

c2, · · · ,xT
c(K−1)]

T , (x∗ ∈ �N ).



Then, the primal-dual splitting algorithm iteratively finds the
two proximal operators1

1. xn+1 := proxγ1G
(xn − γ1∇F (xn)− γ1L

∗yn)

2. yn+1 := proxγ2H∗ (yn − γ2L(2xn+1 − xn)) , (8)

where∇F is the gradient ofF andL∗ is the adjoint ofL.
The sequence(xn)n∈� weekly converges to the solution of
(7) (see [13] for detail). The proximal operators in (8) are
given by

proxγ1G
(x) = x.

proxγ2H∗(u) = u− γ2proxH/γ2

(
u

γ2

)
, (9)

where

proxH/γ2
(u) =

[Pa(xa)
T Pb(xa)

T bPb(yc1)
T , · · · , Pb(yc(K−1))

T ]T .

Pa : �N → �N is the soft-thresholding operator

Pa(xi) =

 xi − α/γ2 if xi − α/γ2 > −ld,i
xi + α/γ2 if xi + α/γ2 < −ld,i
−ld,i otherwise

whereld,i is thei-th element ofld, andPn : �N → �N is
given by

Pn(xi) =

 0 if xi < 0
xi if 0 ≤ xi ≤ 1
1 if xi > 1.

(10)

From the above discussion, our algorithm can be stated as
follows:

1. Setl = 0, andlk,w(0) are given.

2. Solve (2) forw = w(0).

3. Setn = 0, x(n) = w(n), y(n) = Lx .

4. x(n+1) = proxγ1G

(
x(n) − γ1∇F (x(n))− γ1L

∗y(n)
)

5. y(n+1) = proxγ2H∗

(
y(n) − γ2L(2x

(n+1) − x(n))
)

6. If the criterion is not satisfied, incrementn by 1 and then go
to 4.

7. Setw = x(n+1) and solve (2).

4. EXPERIMENTAL RESULTS

In the first experiment, we use sets of three images with differ-
ent exposures, all of which are taken with ISO 100 sensitivity
and have little noise. These shots are obtained by changing
shutter speed, while the aperture is fixed, and use them as

1The proximal operator forγ andF (y) is defined as

proxγF (x) = arg min
y

∥x− y∥/2 + γF (y)

ground truth for our algorithm. We add white Gaussian noise
to the images for the inputs. As conventional methods, we
adopt the simple weight map in [8] and TV denoising in 3.1,
which is essentially same as [14].

The quantitative comparison is listed in Table 1, in which
we compare the proposed method with the weight of the hat
function (Hat) in [8], and the TV denoising, , which is essen-
tially same as [14], with the hat function (HatW+TV). Note
that only the difference between HatW+TV and our method is
the weights, and same parameters are used in the TV denos-
ing. For quality metrics, we use SNR2 of the obtained HDR
image and the nonlinear PSNR. The nonlinear PSNR is cal-
culated by applying Reinhard et al.’s tone-mapping [7] to the
HDR output to yield its low dynamic range version and then
finding its PSNR. Since the HDR image has high dynamic
range, noises in its bright regions are overestimated by SNR
even though it is less perceivable than noises in shadows.
The nonlinear PSNR may be more suitable metric to evalu-
ate HDR images considering the Human Visual System. The
image (a)-(c) in the list are shown in Fig. 1(a)-(c). One can
see from the results that the weight optimization improves the
image quality significantly (see the parts circled in red).

In the second experiment, we take photographs with ISO
1600 to obtain inputs with actual sensor noises, and then ap-
ply the methods to them. Fig. (d)-(e) illustrates the results for
images with actual sensor noises, which are taken with ISO
1600. We average fifteen photographs and the mean image is
set as the ground truth. One can see from the figure that the
conventional method (HatW+TV) sometimes overly smooth
edges, and lack sufficient denoising especially for bright re-
gions, while our method outperforms it.

The conventional weights such as the hat function play a
role of eliminating saturated pixels, while our method does
not consider the pixel saturation. In our method, however,
by virtue of the first term of (3) the pixel saturation seldom
occurs unless the inputh has saturation.

Table 1. SNR and Nonlinear PSNR (NSN), Hat: Hat function, OptW: our
optimal weight, HatW+TV: TV denosing with Hat function, and Our method

Hat Hat+TV Our method
Image SNR NSNR SNR NSNR SNR NSNR

(a) 15.3 23.8 17.4 24.4 19.3 26.4
(b) 15.4 27.0 19.2 28.2 20.8 32.2
(c) 14.4 24.6 17.1 26.3 18.8 29.6

5. CONCLUSION
We introduce a method for the weight optimization. When
combining multiple images to obtain the HDR image, noise
can be significantly reduced by the optimal weight and the
TV denoising technique. We have shown the validity of our
method through the numerical simulation for the images with
AWGN and actual sensor noises.

2Since the HDR image does not have a peak value, PSNR is not used for
the comparison
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Fig. 1. Results:(from left to right) Ground truth, Simple hat function (Hat), hat function plus TV (Hat+TV), and Our method.
(a)-(c): images with AWGN, (d)-(e): images with actual sensor noise
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